Setup The region to solve the PDEs
Clear["Global`*"]
xMax = 453.595 - Sqrt[450.05^2 - 3^2];
regA = Rectangle[{0, 0}, {xMax, 6}];
regB = ImplicitRegion[{453.595 - Sqrt[450.05^2 - (y - 3)^2] - x < 0},
{{x, 0, xMax}, {y, 0, 6}}];
reg = RegionDifference[regA, regB];
RegionPlot[reg, AspectRatio -> 1/10]

Solve the PDEs using NDSolve
solV = NDSolveValue[{D[u[x, y], x, x] + D[u[x, y], y, y] == 0,
DirichletCondition[u[x, y] == 0, 453.595 - Sqrt[450.05^2 - (y - 3)^2] == x],
DirichletCondition[u[x, y] == -180, x == 0],
DirichletCondition[u[x, y] == 50 x - 180, y == 0],
DirichletCondition[u[x, y] == 50 x - 180, y == 6]},
u, {x, y} \[Element] reg]
DensityPlot[solV[x, y], {x, y} \[Element] reg, Mesh -> None,
ColorFunction -> "Rainbow", PlotRange -> All,
PlotLegends -> Automatic, AspectRatio -> 1/10]
Potential Map:

Check out other examples on Mathematica SE
Electric Field Vectors:
eleField[x_, y_] = -Grad[solV[x, y], {x, y}];
Show[
DensityPlot[solV[x, y], {x, y} \[Element] reg, Mesh -> None,
ColorFunction -> "Rainbow", PlotRange -> All,
PlotLegends -> Automatic, AspectRatio -> 1/10, ImageSize -> Full],
VectorPlot[eleField[x, y], {x, y} \[Element] reg, VectorPoints -> 5,
VectorStyle -> Gray, VectorScale -> Small, AspectRatio -> 1/10]
]

NDSolveis what you are looking for. If you need help with something concret why don't you post the code you have. – user21 Jun 25 '16 at 04:43