Based on comment from yode
Let us suppose a list:
list = {{1, 1}, {2, 1}, {7, 8}, {8, 9}}
$\left(
\begin{array}{cc}
1 & 1 \\
2 & 1 \\
7 & 8 \\
8 & 9 \\
\end{array}
\right)$
With this function you can calculate the distances of each point without repetitions:
EuclideanDistance @@@ Subsets[list, {2}]
$\left\{1,\sqrt{85},\sqrt{113},\sqrt{74},10,\sqrt{2}\right\}$
Here below only a presentation of the steps
EuclideanDistance[list[[2]], list[[1]]]
$1$
EuclideanDistance[list[[3]], list[[1]]]
$\sqrt{85}$
EuclideanDistance[list[[4]], list[[1]]]
$\sqrt{113}$
EuclideanDistance[list[[2]], list[[3]]]
$\sqrt{74}$
EuclideanDistance[list[[2]], list[[4]]]
$10$
EuclideanDistance[list[[3]], list[[4]]]
$\sqrt{2}$
DistanceMatrix[]. "Without duplicates" means you'll only need the strict upper triangle of that matrix. – J. M.'s missing motivation Jun 25 '16 at 17:28yourCondition/@yourDistanceFunction@@@Permutations[list]? – JungHwan Min Jun 25 '16 at 17:31UpperTriangularize[]would be appropriate to use withDistanceMatrix[]. – JungHwan Min Jun 25 '16 at 17:34EuclideanDistance @@@ Subsets[yourList, {2}]– yode Jun 25 '16 at 17:34Subsets[Range[4], {2}]– Jason B. Jun 25 '16 at 17:39