I have this code:
AbsoluteTiming[g[x_, t_] := Sin[x]^90*(1 + t^2);
Integrate[g[x, \[Tau]], {\[Tau], 0, t}]]
I want to have convert unit to minute. This is a part of code, I have a formula in iteration. Any suggestion with UnitConvert[] ?
I have this code:
AbsoluteTiming[g[x_, t_] := Sin[x]^90*(1 + t^2);
Integrate[g[x, \[Tau]], {\[Tau], 0, t}]]
I want to have convert unit to minute. This is a part of code, I have a formula in iteration. Any suggestion with UnitConvert[] ?
As far as I am aware, AbsoluteTiming[] gives only answers in seconds, so you need to do this manually
MapAt[UnitConvert[# Quantity["Seconds"], "Minutes"] &,
AbsoluteTiming[g[x_, t_] := Sin[x]^90*(1 + t^2);
Integrate[g[x, \[Tau]], {\[Tau], 0, t}]], 1]
{Quantity[0.000146967, "Minutes"], t Sin[x]^90 + 1/3 t^3 Sin[x]^90}
UnitConvert. Because I have iteration formula and I do not have output for every frequency.
– bahram
Jul 06 '16 at 08:59
MapAt[] instead for this: expr // MapAt[Quantity[#/60, "Minutes"] &, 1]
– J. M.'s missing motivation
Jul 06 '16 at 12:50
MapAt[] which uses UnitConvert[] though, as he specified its usage.
– Feyre
Jul 06 '16 at 14:00
UnitConvert[]? – J. M.'s missing motivation Jul 06 '16 at 08:53UnitConvert[ AbsoluteTiming[g[x_, t_] := Sin[x]^90*(1 + t^2); Integrate[g[x, \[Tau]], {\[Tau], 0, t}]], MixedRadix["Minutes", "Seconds"]]. – bahram Jul 06 '16 at 09:05MixedRadix[]confuses me, this is only useful when the duration is more than 1 minute, and you want to convert the output to minutes+seconds. – Feyre Jul 06 '16 at 09:08"Minutes"or"Minutes, Seconds". If possible for you please consider this code:UnitConvert[ AbsoluteTiming[g[x_, t_] := Sin[x]^90*(1 + t^2); Integrate[g[x, \[Tau]], {\[Tau], 0, t}]], "Minutes"]– bahram Jul 06 '16 at 09:10MapAt[]? – J. M.'s missing motivation Jul 06 '16 at 12:46hmsAbsTiming2[g[x_, t_] := Sin[x]^90*(1 + t^2); Integrate[g[x, \[Tau]], {\[Tau], 0, t}]]withhmsAbsTiming2from my answer to the linked question return the desired output? – Karsten7 Jul 06 '16 at 17:28hmsAbsTiming2[g[x_, t_] := Sin[x]^90*(1 + t^2); Integrate[g[x, \[Tau]], {\[Tau], 0, t}]]. – bahram Jul 07 '16 at 20:28