I am trying to get numeric solution for equations: $$ \left\{x^{(2,0)}(u,t) \left(1-\frac{y^{(1,0)}(u,t)^2}{\left(x^{(1,0)}(u,t)^2+y^{(1,0)}(u,t)^2\right)^{3/2}}\right)+\frac{x^{(1,0)}(u,t) y^{(1,0)}(u,t) y^{(2,0)}(u,t)}{\left(x^{(1,0)}(u,t)^2+y^{(1,0)}(u,t)^2\right)^{3/2}}-x^{(0,2)}(u,t)=0,-\frac{x^{(1,0)}(u,t)^2 y^{(2,0)}(u,t)}{\left(x^{(1,0)}(u,t)^2+y^{(1,0)}(u,t)^2\right)^{3/2}}+\frac{x^{(2,0)}(u,t) x^{(1,0)}(u,t) y^{(1,0)}(u,t)}{\left(x^{(1,0)}(u,t)^2+y^{(1,0)}(u,t)^2\right)^{3/2}}-y^{(0,2)}(u,t)+y^{(2,0)}(u,t)=0\right\} $$ with boundary conditions: $x(0,t)=0,x(1,t)=1,y(0,t)=0,y(1,t)=0,x(u,0)=u,y(u,0)=0,x^{(0,1)}(u,10)=0,y^{(0,1)}(u,10)=0$ Wolfram mathematica says:
CoefficientArrays::poly: $-\text{x$\$$4346}+\text{x$\$$4349} \left(1-\frac{\text{y$\$$4347}^2}{\left(\text{x$\$$4348}^2+\text{y$\$$4347}^2\right)^{3/2}}\right)+\frac{\text{x$\$$4348} \text{y$\$$4347} \text{y$\$$4350}}{\left(\text{x$\$$4348}^2+\text{y$\$$4347}^2\right)^{3/2}}$ is not a polynomial.
NDSolve::femper: PDE parsing error of $\left\{-\text{x$\$$4346}+\text{x$\$$4349} \left(1-\frac{\text{y$\$$4347}^2}{\left(\text{x$\$$4348}^2+\text{y$\$$4347}^2\right)^{3/2}}\right)+\frac{\text{x$\$$4348} \text{y$\$$4347} \text{y$\$$4350}}{\left(\text{x$\$$4348}^2+\text{y$\$$4347}^2\right)^{3/2}},\frac{\text{x$\$$4348} \text{x$\$$4349} \text{y$\$$4347}}{\left(\text{x$\$$4348}^2+\langle\langle 6\rangle\rangle ^2\right)^{\frac{3}{2}}}+\text{y$\$$4350}-\frac{\text{x$\$$4348}^2 \text{y$\$$4350}}{(\langle\langle 1\rangle\rangle +\langle\langle 1\rangle\rangle )^{\frac{3}{2}}}-\text{y$\$$4351}\right\}$ . Inconsistent equation dimensions.
What am I doing wrong?
Add, code in mathematica:
<< VariationalMethods`
L = 1/2 ((D[x[u, t], t]^2 + D[y[u, t], t]^2) -
(Sqrt[D[x[u, t], u]^2 + D[y[u, t], u]^2] - 1)^2)
eq = EulerEquations[L, {x[u, t], y[u, t]}, {u, t}]
cond = {x[0, t] == 0, x[1, t] == 1, y[0, t] == 0, y[1, t] == 0}
addcond = {x[u, 0] == u, y[u, 0] == 0, (D[L, D[x[u, t], t]] /. {t -> 10}) == 0,
(D[L, D[y[u, t], t]] /. {t -> 10}) == 0}
NDSolve[{eq, cond, addcond}, {x[u, t], y[u, t]}, {u, 0, 1}, {t, 0, 10}]
t == 0and velocities att == 10. Is this intentional? With both defined att == 0, the code runs fine. – bbgodfrey Sep 02 '16 at 16:38tand then apply the time-related boundary conditions using the "Shooting"Method. I have done this sort of thing, but it takes some work. – bbgodfrey Sep 02 '16 at 18:04