Here's the system of PDE
Eq1L = (-s^2)*β^2*up[x, y] + Derivative[0, 2][up][x, y] - β^2*Derivative[1, 0][θp][x, y] -
Derivative[1, 1][vp][x, y] + β^2*Derivative[1, 1][vp][x, y] +
β^2*Derivative[2, 0][up][x, y];
Eq2L = (-s^2)*β^2*vp[x, y] - β^2*Derivative[0, 1][θp][x, y] +
β^2*Derivative[0, 2][vp][x, y] - Derivative[1, 1][up][x, y] +
β^2*Derivative[1, 1][up][x, y] + Derivative[2, 0][vp][x, y];
Eq3L = s*ϵ1*ep[x, y] + s^2*ϵ1*τo*ep[x, y] - ϵ2*Qp[x] - s*ϵ2*τo*Qp[x] + s*θp[x, y] +
s^2*τo*θp[x, y] - Derivative[0, 2][θp][x, y] - Derivative[2, 0][θp][x, y];
Eq4L = -ep[x, y] + Derivative[0, 1][vp][x, y] + Derivative[1, 0][up][x, y];
Eq5L = β^2*ep[x, y] - β^2*θp[x, y] - σxp[x, y] - 2*Derivative[0, 1][vp][x, y];
How can eliminate up[x, y], vp[x, y] and ep[x, y] and obtain an equation of fourth order in θp[x, y] ?
Eq3L // FullSimplify. Save your code and restart Mathematica to see what you then get. – bbgodfrey Sep 11 '16 at 03:24