Code is
m[t_] := {mx[t], my[t], mz[t]}
γ = 28;
h = 6.62*10^-34;
e = 1.6*10^-19;
Subscript[μ, 0] = 1.25*10^-6;
Subscript[μM, 0] = 800*10^-3;
Subscript[M, 0] = 0.64*10^6;
Subscript[r, 0] = 100*10^-9;
Subscript[l, 0] = 3*10^-9;
Subscript[I, dc] = 1*10^-3;
Subscript[B, dc] = 200*10^-3;
Subscript[α, G] = 0.01;
p = {0, 0, 1};
σ =(γ*h/2*e)*1/(Subscript[M, 0]*Pi*(Subscript[r, 0])^2)*Subscript[l, 0];
Subscript[B, eff] = {Subscript[B, dc], 0, 0}-Subscript[μM, 0]*(m[t]*p);
system1 ={D[m[t], t] ==γ*(Cross[Subscript[B, eff], m[t]]) + Subscript[α,
G]*(Cross[m[t], D[m[t], t]]) +σ*Subscript[I, dc]*(Cross[m[t], Cross[m[t],
p]]),(m[t] /. t -> 0) == {0, 1, 0}};
s1 = NDSolve[system1, m[t], {t, 0, 50}]
Plot[Evaluate[{mx[t], my[t], mz[t]} /. s1], {t, 0, 50},AxesLabel -> {t, m}]
Plot[Evaluate[mx[t] /. s1], {t, 0, 5}, AxesLabel -> {t, mx}]
Below I find extreme points in the time interval $t\in (0,5)$.
z = Reap[s1 = NDSolve[{system1, WhenEvent[mx'[t] == 0, Sow[t]]}, m[t], {t, 0, 5}]][[2, 1]]
but I found values which lie on the axis of abscissa (t) without values of ordinate (mx). How can I find values of abcissa (t) with values of ordinate (mx)?
Sow[t]toSow[{t,m[t]/.s1]}]. Also, you might check out 1839 w.r.t. subscripted variables. – N.J.Evans Oct 10 '16 at 19:29