I am trying to solve a system of algebraic equations using Solve. The solution Mathematica gives use Root[] as an intermediate:
m5 = {{k - m w^2, -k, 0, 0, 0}, {-k, 2 k - m w^2, -k, 0, 0}, {0, -k, 2 k - m w^2, -k, 0}, {0, 0, -k, 2 k - m w^2, -k}, {0, 0, 0, -k, k - m w^2}};
sol = Solve[Det[m5] == 0 , w, Reals]
The output looks like
{{w -> ConditionalExpression[0, (k > 0 && m > 0) || (k > 0 && m < 0) || (k < 0 && m > 0) || (k < 0 && m < 0)]},
{w -> ConditionalExpression[Root[5 k^2 - 5 k m #1^2 + m^2 #1^4 &, 1], (k > 0 && m > 0) || (k < 0 && m < 0)]}, {w -> ConditionalExpression[ Root[5 k^2 - 5 k m #1^2 + m^2 #1^4 &, 2], (k > 0 && m > 0) || (k < 0 && m < 0)]},
{w -> ConditionalExpression[Root[5 k^2 - 5 k m #1^2 + m^2 #1^4 &, 3], (k > 0 && m > 0) || (k < 0 && m < 0)]},
{w -> ConditionalExpression[Root[5 k^2 - 5 k m #1^2 + m^2 #1^4 &, 4], (k > 0 && m > 0) || (k < 0 && m < 0)]},
{w -> ConditionalExpression[Root[k^2 - 3 k m #1^2 + m^2 #1^4 &, 1], (k > 0 && m > 0) || (k < 0 && m < 0)]},
{w -> ConditionalExpression[Root[k^2 - 3 k m #1^2 + m^2 #1^4 &, 2], (k > 0 && m > 0) || (k < 0 && m < 0)]},
{w -> ConditionalExpression[Root[k^2 - 3 k m #1^2 + m^2 #1^4 &, 3], (k > 0 && m > 0) || (k < 0 && m < 0)]},
{w -> ConditionalExpression[Root[k^2 - 3 k m #1^2 + m^2 #1^4 &, 4], (k > 0 && m > 0) || (k < 0 && m < 0)]}}
Even if I use Simplify[] to state the assumptions
sol = Simplify[sol, Assumptions -> {k > 0, m > 0}]
I still cannot get rid of Root[] in the solution
{{w -> 0}, {w -> Root[5 k^2 - 5 k m #1^2 + m^2 #1^4 &, 1]},
{w -> Root[5 k^2 - 5 k m #1^2 + m^2 #1^4 &, 2]},
{w -> Root[5 k^2 - 5 k m #1^2 + m^2 #1^4 &, 3]},
{w -> Root[5 k^2 - 5 k m #1^2 + m^2 #1^4 &, 4]},
{w -> Root[k^2 - 3 k m #1^2 + m^2 #1^4 &, 1]},
{w -> Root[k^2 - 3 k m #1^2 + m^2 #1^4 &, 2]},
{w -> Root[k^2 - 3 k m #1^2 + m^2 #1^4 &, 3]},
{w -> Root[k^2 - 3 k m #1^2 + m^2 #1^4 &, 4]}}
This is annoying because the quartics are well solvable. Can anyone help please?







Realsrestriction. – J. M.'s missing motivation Oct 14 '16 at 03:36