As much I understand, the crucial part is to define a multiplication table which is not unique. Here I choose a trial example
$e_i \times e_j = \varepsilon_{i',j',k'} e_k$ where $i'=Mod[i,n]$ for $n$ dimension.
prod[n_, i_, j_] := Sum[LeviCivitaTensor[3][[Mod[i, 3, 1], Mod[j, 3, 1], Mod[k, 3, 1]]]
e[k], {k, n}]
I am going to show the example for 3 dimensions which can be verified.
dim = 3
Table[prod[dim, i, j], {i, dim}, {j, dim}] // MatrixForm
$\left(
\begin{array}{ccc}
0 & e(3) & -e(2) \\
-e(3) & 0 & e(1) \\
e(2) & -e(1) & 0 \\
\end{array}
\right)$
vecprod = Sum[prod[dim, i, j] xx[[i]] yy[[j]], {i, dim}, {j, dim}];
Grid[Table[{e[i], Coefficient[vecprod, e[i]]}, {i, dim}], Frame -> All]
$\begin{array}{cc}
e(1) & x(2) y(3)-x(3) y(2) \\
e(2) & x(3) y(1)-x(1) y(3) \\
e(3) & x(1) y(2)-x(2) y(1) \\
\end{array}$
Once you construct your multiplication table you can use use the same method for any dimensions.
Now let's say you don't know the generator of the multiplication table (like me), but you know the table itself.
mtable = {
{0, e[3], -e[2], e[5], -e[4], -e[7], e[6]}, {-e[3], 0, e[1], e[6], e[7], -e[4], -e[5]},
{e[2], -e[1], 0, e[7], -e[6], e[5], -e[4]}, {-e[5], -e[6], -e[7], 0, e[1], e[2], e[3]},
{e[4], -e[7], e[6], -e[1], 0, -e[3], e[2]}, {e[7], e[4], -e[5], -e[2], -e[3], 0, -e[1]},
{-e[6], e[5], e[4], -e[3], -e[2], e[1], 0}};
$\left(
\begin{array}{ccccccc}
0 & e(3) & -e(2) & e(5) & -e(4) & -e(7) & e(6) \\
-e(3) & 0 & e(1) & e(6) & e(7) & -e(4) & -e(5) \\
e(2) & -e(1) & 0 & e(7) & -e(6) & e(5) & -e(4) \\
-e(5) & -e(6) & -e(7) & 0 & e(1) & e(2) & e(3) \\
e(4) & -e(7) & e(6) & -e(1) & 0 & -e(3) & e(2) \\
e(7) & e(4) & -e(5) & -e(2) & -e(3) & 0 & -e(1) \\
-e(6) & e(5) & e(4) & -e(3) & -e(2) & e(1) & 0 \\
\end{array}
\right)$
prod[n_, i_, j_] := mtable[[i, j]]
vecprod = Sum[prod[dim, i, j] xx[[i]] yy[[j]], {i, dim}, {j, dim}];
Grid[Table[{e[i], Coefficient[vecprod, e[i]]}, {i, dim}], Frame -> All]
\begin{array}{cc}
e(1) & -x(3) y(2)+x(2) y(3)-x(5) y(4)+x(4) y(5)+x(7) y(6)-x(6) y(7) \\
e(2) & x(3) y(1)-x(1) y(3)-x(6) y(4)-x(7) y(5)+x(4) y(6)+x(5) y(7) \\
e(3) & -x(2) y(1)+x(1) y(2)-x(7) y(4)-x(6) y(5)-x(5) y(6)+x(4) y(7) \\
e(4) & x(5) y(1)+x(6) y(2)+x(7) y(3)-x(1) y(5)-x(2) y(6)-x(3) y(7) \\
e(5) & -x(4) y(1)+x(7) y(2)-x(6) y(3)+x(1) y(4)+x(3) y(6)-x(2) y(7) \\
e(6) & -x(7) y(1)-x(4) y(2)+x(5) y(3)+x(2) y(4)-x(3) y(5)+x(1) y(7) \\
e(7) & x(6) y(1)-x(5) y(2)-x(4) y(3)+x(3) y(4)+x(2) y(5)-x(1) y(6) \\
\end{array}