I have plotted separately two graphics, and I cannot use show to combine them together because this would disturb the moving pattern. I don't know How to do this. By the way, how to draw another ball rotating the opposite direction in the same picture so that there are two oppositely rotating balls?
Graphics3D[{Sphere[{0, 0, 0}, 1],
Red, Arrowheads[0.02], Arrow[Tube[{{0, 0, 1.5}, {0, 0, 2}}, 0.04]],
Blue, Arrowheads[0.01],
Arrow[Tube[{{0.3, 0, -1.2}, {0.8, 0, -1.7}}, 0.003]],
Blue, Arrowheads[0.01],
Arrow[Tube[{{-0.3, 0, -1.2}, {-0.8, 0, -1.7}}, 0.003]],
Blue, Arrowheads[0.01],
Arrow[Tube[{{0, 0.3, -1.2}, {0, 0.8, -1.7}}, 0.003]],
Blue, Arrowheads[0.01],
Arrow[Tube[{{0, -0.3, -1.2}, {0, -0.8, -1.7}}, 0.003]],
Blue, Arrowheads[0.01],
Arrow[Tube[{{0.3 Sqrt[2]/2, 0.3 Sqrt[2]/2, -1.2}, {0.8 Sqrt[2]/2,
0.8 Sqrt[2]/2, -1.7}}, 0.003]],
Blue, Arrowheads[0.01],
Arrow[Tube[{{-0.3 Sqrt[2]/2, 0.3 Sqrt[2]/2, -1.2}, {-0.8 Sqrt[2]/2,
0.8 Sqrt[2]/2, -1.7}}, 0.003]],
Blue, Arrowheads[0.01],
Arrow[Tube[{{0.3 Sqrt[2]/2, -0.3 Sqrt[2]/2, -1.2}, {0.8 Sqrt[2]/
2, -0.8 Sqrt[2]/2, -1.7}}, 0.003]],
Blue, Arrowheads[0.01],
Arrow[Tube[{{-0.3 Sqrt[2]/2, -0.3 Sqrt[2]/2, -1.2}, {-0.8 Sqrt[2]/
2, -0.8 Sqrt[2]/2, -1.7}}, 0.003]]},
Lighting -> {{"Directional",
RGBColor[0., 0.1, 0.01], {1, 0, 0}}, {"Directional",
RGBColor[0.605, 0.2, 0.1], {0.5, 0.5, 0}}, {"Directional",
RGBColor[0.61, 0.205, 0.1], {0, 1, 0}}, {"Directional",
RGBColor[0.615, 0.21, 0.1], {0.5, -0.5, 0}}, {"Directional",
RGBColor[0.62, 0.215, 0.1], {0, -1, 0}}, {"Directional",
RGBColor[0.625, 0.22, 0.1], {-0.5, -0.5, 0}}, {"Directional",
RGBColor[0.63, 0.225, 0.1], {0, -1, 0}}, {"Directional",
RGBColor[0.635, 0.23, 0.1], {0.5, -0.5, 0}}}, Boxed -> False,
ViewPoint ->
Dynamic[RotationTransform[Clock[{2 \[Pi], 0}, 5], {0, 0, 1}][{1, 0,
0}]], PlotRange -> 5, SphericalRegion -> True]
ParametricPlot3D[{x = 1.5 Cos[10 t], y = 1.5 Sin[10 t],
z = t}, {t, -1.2, 1.2}]
Following is the one that I don't want. I don't want the spiral curve to move anyway.
Show[Graphics3D[{Sphere[{0, 0, 0}, 1],
Red, Arrowheads[0.02], Arrow[Tube[{{0, 0, 1.5}, {0, 0, 2}}, 0.04]],
Blue, Arrowheads[0.01],
Arrow[Tube[{{0.3, 0, -1.2}, {0.8, 0, -1.7}}, 0.003]],
Blue, Arrowheads[0.01],
Arrow[Tube[{{-0.3, 0, -1.2}, {-0.8, 0, -1.7}}, 0.003]],
Blue, Arrowheads[0.01],
Arrow[Tube[{{0, 0.3, -1.2}, {0, 0.8, -1.7}}, 0.003]],
Blue, Arrowheads[0.01],
Arrow[Tube[{{0, -0.3, -1.2}, {0, -0.8, -1.7}}, 0.003]],
Blue, Arrowheads[0.01],
Arrow[Tube[{{0.3 Sqrt[2]/2, 0.3 Sqrt[2]/2, -1.2}, {0.8 Sqrt[2]/2,
0.8 Sqrt[2]/2, -1.7}}, 0.003]],
Blue, Arrowheads[0.01],
Arrow[Tube[{{-0.3 Sqrt[2]/2, 0.3 Sqrt[2]/2, -1.2}, {-0.8 Sqrt[2]/2,
0.8 Sqrt[2]/2, -1.7}}, 0.003]],
Blue, Arrowheads[0.01],
Arrow[Tube[{{0.3 Sqrt[2]/2, -0.3 Sqrt[2]/2, -1.2}, {0.8 Sqrt[2]/
2, -0.8 Sqrt[2]/2, -1.7}}, 0.003]],
Blue, Arrowheads[0.01],
Arrow[Tube[{{-0.3 Sqrt[2]/2, -0.3 Sqrt[2]/2, -1.2}, {-0.8 Sqrt[2]/
2, -0.8 Sqrt[2]/2, -1.7}}, 0.003]]},
Lighting -> {{"Directional",
RGBColor[0., 0.1, 0.01], {1, 0, 0}}, {"Directional",
RGBColor[0.605, 0.2, 0.1], {0.5, 0.5, 0}}, {"Directional",
RGBColor[0.61, 0.205, 0.1], {0, 1, 0}}, {"Directional",
RGBColor[0.615, 0.21, 0.1], {0.5, -0.5, 0}}, {"Directional",
RGBColor[0.62, 0.215, 0.1], {0, -1, 0}}, {"Directional",
RGBColor[0.625, 0.22, 0.1], {-0.5, -0.5, 0}}, {"Directional",
RGBColor[0.63, 0.225, 0.1], {0, -1, 0}}, {"Directional",
RGBColor[0.635, 0.23, 0.1], {0.5, -0.5, 0}}}, Boxed -> False,
ViewPoint ->
Dynamic[RotationTransform[Clock[{2 \[Pi], 0}, 5], {0, 0, 1}][{1, 0,
0}]], PlotRange -> 5, SphericalRegion -> True],
ParametricPlot3D[{x = 1.5 Cos[10 t], y = 1.5 Sin[10 t],
z = t}, {t, -1.2, 1.2}]]
I want a static spiral curve and a rotating ball on the left with static arrows and an oppositely rotating ball on the right.
Show[Graphics3D[Dynamic[Rotate[{Sphere[...],...Arrow[...],..., },Clock[{0,2pi},5],{0,0,1}],..], ParametricPlot3D[...] ]to rotate the graphics instead of the view point. – N.J.Evans Nov 04 '16 at 14:02Rotateit is rotating, you just can't see it because it's all the same color. Try adding thelatitudefunction used in the accepted answer on: 98798. – N.J.Evans Nov 04 '16 at 14:28Clock[{2Pi, 0},5]. – N.J.Evans Nov 04 '16 at 14:30