-1

here I want to plot the v vs p ...the code I used here...

Clear["Global`*"]

p'[v] = (((c1^2 + c2^2 + u*v)*(v + u)*v)/(d1^2*(v^2 - c1^2)*p*
   v)) + ((d1^2*
   p^2 (v^2 + c1^2 + (v^2 - c1^2)^2/2*c2^2))/(d1^2*(v^2 - c1^2)*p*
   v));
p1 = Integrate[p'[v], v];

now what should I do get the plot v vs p1....

xyz
  • 1

1 Answers1

2

You need to define the undefined variables:

pp[v_, c1_, c2_, u_, d1_, 
   p_] := (((c1^2 + c2^2 + u*v)*(v + u)*v)/(d1^2*(v^2 - c1^2)*p*
       v)) + ((d1^2*
       p^2 (v^2 + c1^2 + (v^2 - c1^2)^2/2*c2^2))/(d1^2*(v^2 - c1^2)*p*
       v));
p1[c1_, c2_, u_, d1_, p_] := Integrate[pp[v, c1, c2, u, d1, p], v]

Then you can plot the function for any range of the variables:

Plot[Evaluate[p1[1, 1, 1, 1, 1]], {v, 0, 1}]

enter image description here

Feyre
  • 8,597
  • 2
  • 27
  • 46