I would like to solve the following equation system:
where: $\alpha$ is the unknown vector; $M$ and $K$ are constant matrices (8 x 8).
I don't really know how to solve this :/ (LinearSolve or some loop?)
Any ideas?
Update
Here is my code. Evaluation of the Solve expression runs indefinitely.
M = {{18.252581868563773`, 0.06705185574759391`,
0.5486060924803138`, -0.039621551123578215`, 0.`, 0.`, 0.`,
0.`}, {0.06705185574759391`, 0.09741329795773487`,
1.3410371149518783`, -0.0027430304624015693`, 0.`, 0.`, 0.`,
0.`}, {0.5486060924803138`, 0.039621551123578215`,
8.858972456348772`, 0.`, -0.039621551123578215`, 0.`, 0.`,
0.`}, {-0.039621551123578215`, -0.0027430304624015693`, 0.`,
0.027796042019002567`, -0.0027430304624015693`, 0.`, 0.`,
0.`}, {0.`, 0.`, -0.039621551123578215`, -0.0027430304624015693`,
0.007314747899737517`,
1.3410371149518783`, -0.0027430304624015693`, 0.`}, {0.`, 0.`, 0.`,
0.`, 0.039621551123578215`, 33.68554113363173`,
0.`, -0.039621551123578215`}, {0.`, 0.`, 0.`,
0.`, -0.0027430304624015693`, 0.`,
0.2974057336718429`, -0.0027430304624015693`}, {0.`, 0.`, 0.`, 0.`,
0.`, -0.039621551123578215`, -0.0027430304624015693`,
0.0036573739498687585`}}
K = {{2.432045103220617*^7, 3.6480676548309256^6, -2.432045103220617`^7,
3.6480676548309256*^6, 0, 0, 0, 0}, {3.6480676548309256^6,
729613.5309661851, -3.6480676548309256^6, 364806.7654830926, 0, 0, 0, 0}, {-2.432045103220617^7, -3.6480676548309256`^6,
4.864090206441234*^7, 0., 3.6480676548309256*^6, 0, 0, 0}, {3.6480676548309256^6, 364806.7654830926, 0.,
1.4592270619323703`^6, 364806.7654830926, 0, 0, 0}, {0, 0, 3.6480676548309256^6, 364806.7654830926, 1.4592270619323703^6, -3.6480676548309256*^6, 364806.7654830926, 0}, {0, 0, 0, 0, -3.6480676548309256*^6, 4.864090206441234^7, 0., 3.6480676548309256^6}, {0, 0, 0, 0,
364806.7654830926, 0., 1.4592270619323703*^6, 364806.7654830926}, {0, 0, 0, 0, 0, 3.6480676548309256*^6, 364806.7654830926, 729613.5309661851`}}
freqs = Table[Subscript[α, i], {i, MatrixRank[M]}];
EqOfFreq = -freqs^2 . M + K;
Solve[Det[EqOfFreq] == 0, freqs];

NSolvereturns an infinite number of solutions. And I suspect your code doesn't reflect what you want: 1) how do you understandfreqs^2., and 2) why did you put a dot after the exponent? – corey979 Nov 27 '16 at 16:14freqs^2and see what's the output. A scalar product (a dot product) is performed with theDot:freqs.freqs. Then,Det[EqOfFreq]is a polynomial with 8 variables with degree 16 and... over 17 thousand terms. – corey979 Nov 27 '16 at 16:28freqs^2into somex(being the sum of squares of the alphas), as you multiply the whole matrixMwith this scalar, you will then find with small accuracy (usingFindRoot) that for the determinant to vanishx = 19176.7. Because you have one equation with 8 variables, you won't get anything more of a constraint, which is poor 'cause the coefficients of the characteristic polynomial span 55 orders of magnitude. – corey979 Nov 27 '16 at 16:44