I am trying to solve a set of three non-linear equations in Mathematica. I need help with them. The Mathematica code (in plain text format) is attached below. If you copy & paste the code below into a Notebook the actual input will become clear. It is too complicated to be typed up, hence I am displaying it in this way.
I cannot seem to converge to a solution which is correct. I can get answers but I don't think that makes sense based on the problem that I am doing. Neither χ nor Δ should go to zero.
Defining the functions first (copy & paste in a Notebook)
tχfn[x_?NumericQ,y_?NumericQ,μ_?NumericQ,χ_?NumericQ,Δ_?NumericQ] :=
(Cos[x]+Cos[x/2+Sqrt[3]/2 y]+Cos[x/2-Sqrt[3]/2 y]-μ)^2/Sqrt[4 χ^2 (Cos[x]+
Cos[x/2+Sqrt[3]/2 y]+Cos[x/2-Sqrt[3]/2 y]-μ)^2+4 Δ^2 (Cos[x]+Cos[x/2+Sqrt[3]/2 y]+
Cos[x/2-Sqrt[3]/2 y])^2]
tΔfn[x_?NumericQ,y_?NumericQ,μ_?NumericQ,χ_?NumericQ,Δ_?NumericQ] :=
(Cos[x]+Cos[x/2+Sqrt[3]/2 y]+Cos[x/2-Sqrt[3]/2 y])^2/Sqrt[4 χ^2 (Cos[x]+
Cos[x/2+Sqrt[3]/2 y]+Cos[x/2-Sqrt[3]/2 y]-μ)^2+4 Δ^2 (Cos[x]+Cos[x/2+Sqrt[3]/2 y]+
Cos[x/2-Sqrt[3]/2 y])^2]
tμfn[x_?NumericQ,y_?NumericQ,μ_?NumericQ,χ_?NumericQ,Δ_?NumericQ] :=
(χ^2 (Cos[x]+Cos[x/2+Sqrt[3]/2 y]+Cos[x/2-Sqrt[3]/2 y]-μ))/Sqrt[4 χ^2 (Cos[x]+
Cos[x/2+Sqrt[3]/2 y]+Cos[x/2-Sqrt[3]/2 y]-μ)^2+4 Δ^2 (Cos[x]+Cos[x/2+Sqrt[3]/2 y]+
Cos[x/2-Sqrt[3]/2 y])^2]
Setting up the non-linear solution (copy paste in a notebook)
FindRoot[
{
NIntegrate[tχfn[x, y, μ, χ, Δ], {x, (4*Pi)/3, (10*Pi)/3}, {y, 0, (4*Pi)/Sqrt[3]},
Method -> "MultiPeriodic"] == 1.5,
NIntegrate[tΔfn[x, y, μ, χ, Δ], {x, (4*Pi)/3, (10*Pi)/3}, {y, 0, (4*Pi)/Sqrt[3]},
Method -> "MultiPeriodic"] == 1.5,
NIntegrate[tμfn[x, y, μ, χ, Δ], {x, (4*Pi)/3, (10*Pi)/3}, {y, 0, (4*Pi)/Sqrt[3]},
Method -> "MultiPeriodic"] == 0.125
},
{{μ, 0.02}, {χ, 1.}, {Δ, 1.}},
Evaluated -> False
]
I have tried without the "MultiPeriodic" option, with "MonteCarlo" option, and even used the basic default option.
NIntegrate[]orFindRoot[]; all they do is give approximations. The method in that post I linked to computes numerical solutions as well, though it uses plotting functions internally. – J. M.'s missing motivation Oct 18 '12 at 16:34