As proposed, I would consider the center of the region cen, compute the inertia matrix J in respect to it, compute the eigenvalues of J and classify the body the ratio of minimal and maximal eigenvalue of J
Example in 2D
np = 5;
points = RandomReal[{1, 3}, {np, 2}];
ch = ConvexHullMesh@points;
vol = RegionMeasure@ch;
cen = RegionCentroid@ch;
integrand = TensorProduct[{x, y} - cen, {x, y} - cen];
J = NIntegrate[integrand, Element[{x, y}, ch]];
eigenvec = Eigenvectors@J;
eigenval = Eigenvalues@J;
Show[{ch, Graphics@Point@points,
Graphics[{Red, PointSize -> Large, Point@cen}],
Graphics[{Blue, Arrow[{cen, cen + eigenvec[[1]]}],
Arrow[{cen, cen + eigenvec[[2]]}]}]},
PlotRange -> {{0, 4}, {0, 4}}, Axes -> True, ImageSize -> 300]
Print["Ratio of min to max eigenvalue: ", Min[eigenval]/Max[eigenval]]

The tendency of this ratio to 0 represents a skinny body. Tendency to 1 describes a spherical body (remark: a cube is considered as "spherical" in this approach).
Example in 3D
Naturally, you can adapt the code for 3D, if you want.
np = 5;
points = RandomReal[{1, 3}, {np, 3}];
ch = ConvexHullMesh@points;
vol = RegionMeasure@ch;
cen = RegionCentroid@ch;
integrand = TensorProduct[{x, y, z} - cen, {x, y, z} - cen];
J = NIntegrate[integrand, Element[{x, y, z}, ch]];
eigenvec = Eigenvectors@J;
eigenval = Eigenvalues@J;
Show[{ch, Graphics3D@Point@points,
Graphics3D[{Red, PointSize -> Large, Point@cen}],
Graphics3D[{Blue, Arrow[{cen, cen + eigenvec[[1]]}],
Arrow[{cen, cen + eigenvec[[2]]}], ,
Arrow[{cen, cen + eigenvec[[3]]}]}]},
PlotRange -> {{0, 4}, {0, 4}, {0, 4}}, Axes -> True, ImageSize -> 300]
Print["Ratio of min to max eigenvalue: ", Min[eigenval]/Max[eigenval]]

BoundingRegion[](in particular, the"MinOrientedCuboid"version). – J. M.'s missing motivation Jan 19 '17 at 18:08