I am attempting to plot the bifurcation diagram of the tent map $$ f(x):=2\alpha \begin{cases} x, & 0<x<1/2\\ 1-x, &1/2<x<1, \end{cases} $$ i.e., the plot $\alpha$ vs. the limit points of the sequence $x_{n}:=f(x_{n-1})$. I found the following code online to plot the bifurcation diagram of the related logistic map:
ListPlot[ParallelTable[Thread[{r, Nest[r # (1 - #) &,
Range[0, 1, 0.01], 1000]}], {r, 0, 4, 0.01}], PlotStyle -> PointSize[0]]
So naturally, I figured that I could make a simple change to get the bifurcation diagram of the tent map:
ListPlot[ParallelTable[Thread[{r, Nest[2*r*If[0<#<0.5,#, (1 - #)] &,
Range[0, 1, 0.01], 1000]}], {r, 0, 1, 0.01}], PlotStyle -> PointSize[0]]
But it doesn't work! Is there a simple change I can make to get this guy to work?

