0

I have a expression:

13 + 6 Sqrt[6 - x] x == x

I want to simplify the Sqrt to be -169+26 x+215 x^2-36 x^3==0.But Simplify[13 + 6 Sqrt[6 - x] x == x, Assumptions -> x < 6] don't work.And I have tried ComplexityFunction:

FullSimplify[13 + 6 Sqrt[6 - x] x == x, 
 ComplexityFunction -> (1000 Count[#, _Sqrt, {0, Infinity}] + 
     LeafCount[#] &)]

I can get anything still.So how to elminate the Sqrt?

yode
  • 26,686
  • 4
  • 62
  • 167

3 Answers3

4

Perhaps:

Solve[13 + 6 Sqrt[6 - x] x == x, x, Cubics -> False]

{{x -> Root[169 - 26 #1 - 215 #1^2 + 36 #1^3 &, 1]}}

Carl Woll
  • 130,679
  • 6
  • 243
  • 355
3

Adapting the F function from DSolve misses a solution of a differential equation, we get

Clear[rat];
(* rationalize fractional powers *)
rat[eqn_Equal] := rat[Subtract @@ eqn] == 0;
rat[fn_] := Module[{u}, 
   With[{rads = DeleteDuplicates@Cases[fn, Power[a_, b_Rational] :> u[a, b], Infinity]}, 
    First@GroebnerBasis[
      Flatten@{fn /. Power[a_, b_Rational] :> u[a, b], 
        Map[
         Numerator@Together[           (*gets rid of denominators in neg.powers*)
           #^Denominator[Last@#] - First[#]^Numerator[Last@#]
           ] &, 
         rads]}, rads]]];

rat[13 + 6 Sqrt[6 - x] x == x]

(* Out[79]= 169 - 26 x - 215 x^2 + 36 x^3 == 0 *)
Goofy
  • 2,767
  • 10
  • 12
0

GroebnerBasis can do this:

First[GroebnerBasis[13 + 6 Sqrt[6 - x] x - x, x]]

169-26 x-215 x^2+36 x^3

yode
  • 26,686
  • 4
  • 62
  • 167