When running NonlinearModelFit on certain functional forms, the method just returns the input expression without evaluating. For example:
nlm2 =
NonlinearModelFit[
rUnder, {a (t/tl (1 - t/tl)^b)^(1/2)}, {{a, 21}, {b, .5}, {tl,
2.17}}, t, Weights -> weightsUnder,
VarianceEstimatorFunction -> (1 &)]
Out[1]= NonlinearModelFit[{{1.81593, 20.}, {1.9886,
16.6667}, {2.02291, 15.625}, {2.09426, 13.8889}, {2.12865,
11.3636}, {2.158, 7.8125}, {2.17323, 7.57576}, {2.18395,
4.16667}, {2.1344, 12.5}, {2.08936, 13.8889}, {1.99008,
17.8571}, {1.89548, 19.2308}, {1.83101, 19.2308}, {1.7435,
21.1795}, {1.7158, 22.7273}, {1.6527, 20.8333}, {1.63489,
20.}, {1.616, 20.}, {1.59589, 20.}, {2.04861, 17.3524}, {1.9781,
18.2618}, {1.96271, 18.6676}, {1.9468, 18.9353}, {1.93863,
19.1374}, {1.81373, 19.9836}, {1.80704, 19.9943}, {1.7933,
19.9749}, {1.78147, 19.872}, {1.76925, 20.0654}, {1.78387,
20.0318}, {2.04328, 20.1613}, {2.03385, 20.4918}, {1.9062,
23.1481}, {1.8732, 25.}}, {a Sqrt[(t (1 - t/tl)^b)/tl]}, {{a,
21}, {b, 0.5}, {tl, 2.17}}, t,
Weights -> {11.3798, 34.9676, 23.1823, 41.8684, 59.9708, 168.066,
246.244, 112.401, 35.5266, 29.2875, 18.9364, 16.1314, 12.3042,
49.706, 13.9461, 53.9137, 52.9276, 49.7358, 46.7365, 21.7433,
71.1736, 67.3292, 129.239, 15.842, 149.66, 72.7971, 84.6504,
82.3477, 68.1859, 24.7328, 105.164, 18.0225, 26.1849, 33.8865},
VarianceEstimatorFunction -> (1 &)]
A similar error occurs with CubeRoot (not shown for conciseness).
The problem does go away if I put Abs around the interior of the root, but this produces an unsatisfactory fit. It also goes away if I use Re instead, but breaks again if I change the starting parameter away from .5 (and indeed does not appear to vary that parameter).
I could try using FindFit or taking the logarithm of my data, but I don't know how to un-transform the resulting statistical error measures.