Reparametrizing:
f[u_, v_] := Sqrt[27] {Sin[u] Cos[v]/Sqrt[3], Sin[u] Sin[v], Cos[u]}
g[u_, v_] := 5 {Sin[u] Cos[v], Sin[u] Sin[v], Cos[u]}
From inspection the cartesian definitions intersect at circles in y-z plane at$x=\pm 1$. This can be done:
(* the 2 surfaces *)
p = ParametricPlot3D[{f[u, v], g[u, v]}, {u, 0, Pi}, {v, 0, 2 Pi},
Mesh -> None, PlotPoints -> 50]
(* the cartesian definition *)
f[x_, y_, z_] := 3 x^2 + y^2 + z^2 - 27
g[x_, y_, z_] := x^2 + y^2 + z^2 - 25
(* visualization *)
Show[p, ParametricPlot3D[{x, Cos[u] Sqrt[25 - x^2],
Sin[u] Sqrt[25 - x^2]} /.
Quiet@Solve[f[x, y, z] == g[x, y, z], {x, y, z}], {u, 0, 2 Pi},
PlotStyle -> Red]]
