The probability that two integers $m$ and $n$ picked at random are relatively prime is $6/\pi^2$
There is a simple code to check it
n = 10^6;
Count[GCD @@@ RandomInteger[{1, n}, {n, 2}], 1]/n // N
$0.607687$
N[6/Pi^2]
$0.607927$
How can I use CoprimeQ function?
I want to do something like this
n = 10^6;
Select[RandomInteger[{1, n}, {n, 2}], CoprimeQ]
or
CoprimeQ[#1, #2] &[RandomInteger[{1, n}, {n, 2}]]
but it doesn't work.
Select[RandomInteger[{1, n}, {n, 2}], Apply[CoprimeQ]]– Kuba Mar 23 '17 at 12:34Count[GCD @@@ RandomInteger[{1, n}, {n, 2}], 1]/n // Nis 4 time faster thanLength@Select[RandomInteger[{1, n}, {n, 2}], Apply[CoprimeQ]]/n // N– vito Mar 23 '17 at 12:42