I would like to verify
Subscript[\[CurlyEpsilon], i\[InvisibleComma]j\[InvisibleComma]k] Subscript[\[CurlyEpsilon], i m n]=Subscript[\[Delta], j m] Subscript[\[Delta], k n]-Subscript[\[Delta], j n] Subscript[\[Delta], k m]
I have defined:
Subscript[\[Delta], i_Integer, j_Integer] := KroneckerDelta[i, j]
Subscript[\[Epsilon], i__Integer] := Signature[{i}]
What is a good way to demonstrate the above identity holds?
Thanks in advance.
Sum, just usingTensorProductandTensorContract, e.g. Contracting with Levi-Civita (totally antisymmetric) tensor see also e.g. Using the epsilon tensor in Mathematica. – Artes Apr 08 '17 at 11:03