How i can find a frequency from graph after i solve equation by using NDsolve. I try to find frequency, and after that i want to plot a graph frequency versus alpha. This is my code
g = 1
w = 3 (*frequency*)
y = 1 (*nonlinearity*)
V0 = 5.74 (* external potential*)
q0 = 0.1 (*alpha*)
A0 = 1 (* initial amplitude*)
d0 = -0.5 (* initial center-of-mass position*)
a0 = 1 (* initial width*)
I1 = 2*V0*q0*a[t]*Sqrt[π]*d[t]
I2 = 2*V0*q0*a[t]^3*d[t]*Sqrt[π]/2
I3 = 2*V0*q0*a[t]^3*Sqrt[π]/2
Q1 = V0*a[t]^3*Sqrt[π]/2 + V0*a[t]*d[t]^2*Sqrt[π]
Q2 = V0*a[t]^5*(3 Sqrt[π])/4 + V0*a[t]^3*d[t]^2*Sqrt[π]/2
F = Sqrt[π]/2*V0*A[t]^2*a[t]^3 + Sqrt[π]*V0*A[t]^2*a[t]*d[t]^2
s = NDSolve[{
A'[t] == A[t]*b[t] - (I2*A[t])/(Sqrt[π]*a[t]^3) + (3*A[t]*I1)/( 2*Sqrt[π]*a[t]),
k'[t] == (2*Sqrt[π]*V0*A[t]^2*a[t]*d[t])/( Sqrt[π]*A[t]^2*a[t]) + (4*b[t]*I3)/( Sqrt[π]*a[t]),
a'[t] == -2*a[t]*b[t] - I1/Sqrt[π] + (2*I2)/( Sqrt[π]*a[t]^2),
d'[t] == -k[t] + (2*I3)/(Sqrt[π]*a[t]),
b'[t] == -(1/(2*a[t]^4)) + 2*b[t]^2 + (y*A[t]^2)/( 2*Sqrt[2]*a[t]^2) + (g*A[t]^2*a[t])/( 2*Sqrt[2]*(a[t]^2 + w^2)^(3/2)) + (2*Q2)/(Sqrt[π]*a[t]^5) - Q1/(Sqrt[π]*a[t]^3),
A[0] == 1, k[0] == 0.1, a[0] == 1, d[0] == -0.5, b[0] == 0}, {A, k,
a, d, b}, {t, 0, 50}]
ysol[t_] := d[t] /. s[[1]]
(*plot graph for center-of-mass position versus time*)
Plot[ysol[t], {t, 0, 50}, Frame -> True, PlotRange -> {All, All},
FrameLabel -> {StyleForm["time (s) ", FontSize -> 14],
StyleForm["ξ (center-of-mass position)", FontSize -> 14]}]
How i can find frequency from peak to peak? what code i should use.

