I want something like
f[n] = Sum[2^Sum[i_k, {k, n}], {i_1, Infinity}, {i_2, Infinity},...{i_n, Infinity}]
I'm playing with:
Table[i_k, {k, n}]
But can't find a way to parse it in the definition.
What's the good way to do it?
Try this:
With[{n = 5},
Inactive[Sum][a^Sum[K[i], {i, n}], ##] & @@
Table[{K[i], 1, ∞}, {i, n}]]
$$\sum_{\mathtt{K[1]}=1}^\infty \sum_{\mathtt{K[2]}=1}^\infty \sum_{\mathtt{K[3]}=1}^\infty \sum_{\mathtt{K[4]}=1}^\infty \sum_{\mathtt{K[5]}=1}^\infty a^{\mathtt{K[1]}+\mathtt{K[2]}+\mathtt{K[3]}+\mathtt{K[4]}+\mathtt{K[5]}}$$
Replace Inactive[Sum] with Sum to see the actual result of the evaluation.