I always wonder how can one find solutions in Mathematica in a simple form. When I find answers to an equation, the output is always in a messy form. For example below is the answer for a parameter I got when I run my code:
-((0.09428090415820634` Sqrt[-1 +
15 e ro] (alpha ro ((0.` +
1.119744`*^9 I) - (0.` + 3.919104`*^10 I) e ro + (0.` +
4.19904`*^11 I) e^2 ro^2 - (0.` +
1.259712`*^12 I) e^3 ro^3) +
dr ((0.` -
8.0621568`*^11 I) + (0.` +
3.22486272`*^13 I) e ro - (0.` +
4.43418624`*^14 I) e^2 ro^2 + (0.` +
2.41864704`*^15 I) e^3 ro^3 - (0.` +
4.5349632`*^15 I) e^4 ro^4)) v Cos[
t])/(alpha ro (-298598.40000000026` + 1.1943936`*^7 e ro -
1.6422912`*^8 e^2 ro^2 + 8.957952`*^8 e^3 ro^3 -
1.679616`*^9 e^4 ro^4) +
dr (2.14990848`*^8 - 9.674588159999992`*^9 e ro +
1.61243136`*^11 e^2 ro^2 - 1.236197376`*^12 e^3 ro^3 +
4.43418624`*^12 e^4 ro^4 - 6.0466176`*^12 e^5 ro^5)))
I'm sure that it could be shown in more simple way. for example multiplication of some terms with exponents. Is there any way to change the solution in this form? I have tried Simplify but it doesn't change the form of the solution. Any answer which could show the solution in more simple way is highly approcated. *By more simple I mean more compact form. for example I prefer the solution (x+a)^3+(x+b)^3 other than 2 x^3 + 3x^2 a + 3x^2 b+....
I have applied the procedure in the answer to below expression:
ex = ((0.` + 11.785113019775793` I) dr Sqrt[-1.` +
15.` e ro] (h^2 (0.004629629629629629` h +
0.000462962962962963` alpha ro) +
dr h (h (0.3472222222222222` - 1.0416666666666667` e ro) +
alpha ro (0.034722222222222224` -
0.10416666666666667` e ro)) +
dr^2 (alpha ro (0.2` + 1.` e ro) + h (2.` + 10.` e ro))) v Cos[
t])/(dr^2 h (-0.0074074074074074086` h -
0.0005555555555555556` alpha ro) +
h^3 (-4.822530864197532`*^-6 h -
4.018775720164609`*^-7 alpha ro) +
dr h^2 (alpha ro (-0.00003858024691358025` +
0.00011574074074074075` e ro) +
h (-0.00048225308641975306` + 0.0014467592592592592` e ro)) +
dr^3 (alpha ro (0.013333333333333329` -
0.26666666666666666` e ro + 1.` e^2 ro^2) +
h (0.2` - 4.` e ro + 15.` e^2 ro^2)))
where
h= 30 dr (6 e ro - 1.2 + 0.8 Sqrt[3 - 30 e ro]);
I could change ex to
((0. + 500. I) v (-3. + X) Sqrt[1 - X^2] (3. + 38. X - 52. X^2 + 10. X^3 + 1. X^4 + alpha ro (-0.0166667 - 0.233333 X - 0.0166667 X^2)) Cos[t])/((-1. + X) (9. - 6. X - 113. X^2 + 140. X^3 - 25. X^4 - 6. X^5 + 1. X^6 + alpha ro (-0.0625 - 0.15 X + 0.475 X^2 + 0.0166667 X^3 - 0.0125 X^4)))
by below change
e -> (3 - X^2)/(30 ro)
But after that, Simplify can not make it simpler. Could anyone guess what is the problem and how to solve it?
Expand? Is that "simple"? Ife, ro, dretc. are real, then how aboutComplexExpand? – Marius Ladegård Meyer May 05 '17 at 20:03drandalpha, as much as seems possible at a first glance. And looking at the factor next toalpha roin the numerator, we can trySolveAlways[ 1.119744^9 - 3.919104`^10 e ro + 4.19904*^11 e^2 ro^2 - 1.259712*^12 e^3 ro^3 == (const - e ro)^3, {e, ro}], but this returns{}`, meaning that there is no solution of this form. So your "maybe" is a "no" at least for that factor. – Marius Ladegård Meyer May 05 '17 at 20:35(100/Sqrt[2]) I v Sqrt[15 e ro - 1] Cos[t]/(0.2 - e ro)so the question seems reasonable – Simon Woods May 06 '17 at 11:43