I need to solve a system of two ODE's using improved Euler's (Heun) method. Can any one help as I am pretty bad at Mathematica. This is what I've come up with so far
f[t_, x_, y_] = -4 x - 2 y + cos (t) + 4 sin (t);
g[t_, x_, y_] = 3 x + y - 3 sin (t);
xlist = {0};
ylist = {-1};
h = .1;
n = 10;
For[i = 1, i <= n, i++,
{
k1 = h*f[ h*(i - 1), xlist[[i]], ylist[[i]] ],
m1 = h*g[ h*(i - 1), xlist[[i]], ylist[[i]] ],
k2 = h*f[h*(i - 0.5), xlist[[i], ylist[[i]] + 0.5 k1],
m2 = h*g[h*(i - 0.5), xlist[[i], ylist[[i]] + 0.5 m1],
k3 = h*f[h*(i - 0.5), xlist[[i]], ylist[[i]] + 0.5 k2]],
m3 = h*g[h*(i - 0.5), xlist[[i], ylist[[i]] + 0.5 m2],
k4 = h*f[ h*i, xlist[[i]], ylist[[i]] + k3]
m4 = h*g[ h*i, xlist[[i]], ylist[[i]] + m3]
AppendTo[xlist, xlist[[i]] + 1/6*(k1 + k2 + k3 + k4)],
AppendTo[ylist, ylist[[i]] + 1/6*(m1 + m2 + m3_m4)]
]]}]
xlist
ylist

