Here a simple and very fast procedure to eliminate the square roots.
First bring all summands of the equation on one side and make a list.
list = List @@ (Sqrt[a] + Sqrt[b] - Sqrt[c] - x);
Then define Tuples and delete the ones that differ only by factor -1.
tup[n_ ] := Tuples[{-1, 1}, n];
uni = Union[tup[4], SameTest -> (#1 == -#2 &)]
(* {{-1, -1, -1, -1}, {-1, -1, -1, 1}, {-1, -1, 1, -1}, {-1, -1, 1,
1}, {-1, 1, -1, -1}, {-1, 1, -1, 1}, {-1, 1, 1, -1}, {-1, 1, 1, 1}} *)
Now multipliy the equation with all these selected tuples.
Times @@ (Plus @@ # & /@ (list*# & /@ uni)) // Expand
(* a^4 - 4 a^3 b + 6 a^2 b^2 - 4 a b^3 + b^4 - 4 a^3 c + 4 a^2 b c +
4 a b^2 c - 4 b^3 c + 6 a^2 c^2 + 4 a b c^2 + 6 b^2 c^2 - 4 a c^3 -
4 b c^3 + c^4 - 4 a^3 x^2 + 4 a^2 b x^2 + 4 a b^2 x^2 - 4 b^3 x^2 +
4 a^2 c x^2 - 40 a b c x^2 + 4 b^2 c x^2 + 4 a c^2 x^2 +
4 b c^2 x^2 - 4 c^3 x^2 + 6 a^2 x^4 + 4 a b x^4 + 6 b^2 x^4 +
4 a c x^4 + 4 b c x^4 + 6 c^2 x^4 - 4 a x^6 - 4 b x^6 - 4 c x^6 + x^8 *)
This works for all dinensions and for your general example.
su = Sum[r[i] Sqrt[(x[i] - a[i])^2 + (y[i] - b[i])^2], {i, 3}] - T;
list = List @@ su
uni = Union[tup[4], SameTest -> (#1 == -#2 &)]
Times @@ (Plus @@ # & /@ (list*# & /@ uni)) // Expand
(* A very large output was generated
T^8-4 T^6 a[1]^2 r[1]^2-.... *)
Appendix
In general you have to multiply with Length[onesided equation] tuples
(( Sqrt[a] + Sqrt[b] - Sqrt[c]) (- Sqrt[a] + Sqrt[b] - Sqrt[
c]) (- Sqrt[a] - Sqrt[b] - Sqrt[c]) (
Sqrt[a] - Sqrt[b] - Sqrt[c]) // Expand) == 0
(* a^2 - 2 a b + b^2 - 2 a c - 2 b c + c^2 == 0 *)
But if you have less than Length[...]-1 square roots, you only have to permutate sign of the square root summands to get the minimal form
(( Sqrt[a] + b - c) (- Sqrt[a] + b - c) // Expand) == 0
(* -a + b^2 - 2 b c + c^2 == 0 *)
(( Sqrt[a] + Sqrt[b] - c + d) (- Sqrt[a] + Sqrt[b] - c +
d) (- Sqrt[a] - Sqrt[b] - c + d) ( Sqrt[a] - Sqrt[b] - c + d) //
Expand) == 0
(* a^2 - 2 a b + b^2 - 2 a c^2 - 2 b c^2 + c^4 + 4 a c d + 4 b c d -
4 c^3 d - 2 a d^2 - 2 b d^2 + 6 c^2 d^2 - 4 c d^3 + d^4 == 0 *)
GroebnerBasis[{Sqrt[a] + Sqrt[b] == Sqrt[c]}, {a, b, c}, MonomialOrder -> EliminationOrder] // Last– J. M.'s missing motivation May 18 '17 at 20:48GroebnerBasis[{n1*Sqrt[(x - a1)^2 + y^2] + n2*Sqrt[(x - a2)^2 + y^2] == T}, {n1, n2, a1, a2, T, x, y}, MonomialOrder -> EliminationOrder] // Last– Maesumi May 19 '17 at 00:32GroebnerBasis[{n1*Sqrt[(x - a1)^2 + y^2] + n2*Sqrt[(x - a2)^2 + y^2] == T}, {x, y, T, n1, n2, a1, a2}][[1]](That's why I didn't post a solution yet; I have nothing automatable.) – J. M.'s missing motivation May 19 '17 at 02:53