I am working with multivariate polynomials, e.g.
Expand[Normal[Series[d/Sqrt[(1 - x^2 + y^2)], {x, 0, 5}, {y, 0, 5}]]]
which for this example results in
$\frac{105 x^4 y^4}{64}-\frac{15 x^4 y^2}{16}+\frac{3 x^4}{8}+\frac{15 x^2 y^4}{16}-\frac{3 x^2 y^2}{4}+\frac{x^2}{2}+\frac{3 y^4}{8}-\frac{y^2}{2}+1$
How can truncate the polynomial to a "combined degree" $d\leq i+j, x^iy^j$?
Expected result for the given example and $d=5$:
$\frac{3 x^4}{8}-\frac{3 x^2 y^2}{4}+\frac{x^2}{2}+\frac{3 y^4}{8}-\frac{y^2}{2}+1$