I am trying to evaluate the following integral for which the actual result is -4.4(as per information i got) but what i get is -2.15.
ClearAll[t]
{r = 4.087, a = 1.205, b = 0.3812, Z = 0, A = 345.0527, B = 606741.04395, \ [Phi] = Pi/3};
KK[n_] := r*NIntegrate[1/((t*Sin[ϕ])^2 + r^2 + (t*Cos[ϕ] + Z - z)^2 - 2*r*t*Sin[ϕ]*Cos[η])^n,
{η, 0, 2*Pi}, {z, 0, Infinity}, {t, -1.66, 1.66}, WorkingPrecision -> 50, PrecisionGoal -> 6];
a*b*((-A)*KK[3] + B*KK[6])
NIntegrate::precw: The precision of the argument function (1/(16.7036+<<4>>)^3) is less than WorkingPrecision (50.`). >>
NIntegrate::precw: The precision of the argument function (1/(16.7036+<<4>>)^6) is less than WorkingPrecision (50.`). >>
-2.15814
{r, a, b, Z, A, B, \[Phi]} = {4.087, 1.205, 0.3812, 0, 345.0527, 606741.04395, Pi/3} // Rationalize[#, 0] &. Also as suggested by @KraZug change your limits of integration to exact numbers orRationalizethem. – Bob Hanlon Jun 15 '17 at 17:28