3

I would like to calculate the Jacobian transformation of the measure $dx dy$ $z = e^{x+iy}, \bar{z}=e^{x-iy}$ which should give $-2i|z|^2$. I am not sure how to do this in Mathematica. Further, I need it to generalize it to more variables. So, how could I write this transformation in "1-step"?

m_goldberg
  • 107,779
  • 16
  • 103
  • 257
Gorbz
  • 133
  • 3

2 Answers2

5
z = Exp[x + I y];

zconj = Exp[x - I y];


vars = {x, y};

funcs = {z, zconj};

matJacobi = Outer[D, funcs, vars]
{{E^(x + I y), I E^(x + I y)}, {E^(x - I y), -I E^(x - I y)}}
detJacobi = Det[matJacobi]
-2 I E^(2 x)

but I do not get -2i Abs[z]^2, but -2i Exp[2x]

Danel
  • 173
  • 6
4

You can just use D. The Jacobian is:

j = D[{Exp[x + I y], Exp[x - I y]}, {{x, y}}]

and the Determinant of this is:

Det[j]

-2 I E^(2 x)
bill s
  • 68,936
  • 4
  • 101
  • 191