First solve for the y that fulfill the conditions in dependance of x
(since a and c are material parameters, I supposed them to be greater 0)
sol[x_, a_, b_, c_] =
Solve[a*x^4 + b*y^4 + c == 1 && a > 0 && c > 0, y, Reals]
(* {{y -> ConditionalExpression[-((1 - c - a x^4)/b)^(
1/4), (0 < a < (1 - c)/x^4 && 0 < c < 1 && b > 0 &&
x > 0) || (0 < a < (1 - c)/x^4 && 0 < c < 1 && x < 0 &&
b > 0) || (0 < c < 1 && b < 0 && a > (1 - c)/x^4 &&
x > 0) || (0 < c < 1 && b < 0 && x < 0 &&
a > (1 - c)/x^4) || (b < 0 && a > 0 && c > 1 &&
x > 0) || (b < 0 && x < 0 && a > 0 && c > 1)]}, {y ->
ConditionalExpression[((1 - c - a x^4)/b)^(
1/4), (0 < a < (1 - c)/x^4 && 0 < c < 1 && b > 0 &&
x > 0) || (0 < a < (1 - c)/x^4 && 0 < c < 1 && x < 0 &&
b > 0) || (0 < c < 1 && b < 0 && a > (1 - c)/x^4 &&
x > 0) || (0 < c < 1 && b < 0 && x < 0 &&
a > (1 - c)/x^4) || (b < 0 && a > 0 && c > 1 &&
x > 0) || (b < 0 && x < 0 && a > 0 && c > 1)]}} *)
Calculate the xmax depending on a,b,c
xmax[a_, b_, c_] =
x /. Maximize[x^2 + y^2 /. sol[x, a, b, c][[1]], x][[2]]

(Maximize of course also gives you the hight of the maximum, not shown here)
For example plot for a=1 ond c=1/2
Plot[xmax[1, b, 1/2], {b, 0, 3}]

Plot[y /. sol[xmax[1, b, 1/2], 1, b, 1/2], {b, 0, 3}]

At last, consider, that there are two equal maxima, one at xmax and one at -xmax.
Have a look with
Manipulate[
Plot[Evaluate[x^2 + y^2 /. sol[x, a, b, c][[1]]], {x, -1, 1}], {{a,
1}, -3, 3}, {{b, 1}, -4, 4}, {{c, 1/2}, -3, 3}]
Maximize[{x^2 + y^2, a*x^4 + b*y^4 + c == 1}, {x, y}]useful? You might want to add constraints toa,b,cas well; surely there are constraints for those constants too? – J. M.'s missing motivation Aug 01 '17 at 03:24Truecondition is the "otherwise" case; see this for instance. You say thataandcare "material parameters", andbis a force. Can they be negative? – J. M.'s missing motivation Aug 01 '17 at 05:30Maximize[{x^2 + y^2, a*x^4 + b *y^4 + c == 1 && a > 0 && c > 0}, {x, y}]. – J. M.'s missing motivation Aug 02 '17 at 14:20