The PDE in question is,
sol = DSolve[{epsilon^2*D[u[eta, zeta], eta, eta] +
D[u[eta, zeta], zeta, zeta] == -1}, u, {eta, zeta}]
DSolve is unable to find C[1] and C[2] with the following boundary conditions,
bc1 = 2*Kn*epsilon*(D[u[eta, zeta], eta] /. eta -> 1) == -u[eta, zeta];
bc2 = 2*Kn*epsilon*(D[u[eta, zeta], zeta] /. zeta -> 1) == -u[eta, zeta];
bc3 = D[u[eta, zeta], eta] == 0 /. eta -> 0
bc4 = D[u[eta, zeta], zeta] == 0 /. zeta -> 0
Is there an alternate way to find C[1] and C[2] subject to the above conditions?

/. eta -> 1should be at the end of the equation i.e.2*Kn*epsilon*(D[u[eta, zeta], eta] ) == -u[eta, zeta]/. eta -> 1? – xzczd Aug 17 '17 at 11:44