Let's define F4 and estimate the distribution of the data:
W = Import["https://pastebin.com/raw/kE49s1Fj", "Package"];
F4 = Log[W];
EstimatedDistribution[F4, MixtureDistribution[{0.65, 1 - 0.65},
{NormalDistribution[α, c], NormalDistribution[d, e]}]]
EstimatedDistribution[F4, MixtureDistribution[{0.65, 1 - 0.65},
{NormalDistribution[Subscript[μ, 4], Subscript[σ, 4]],
NormalDistribution[Subscript[ν, 4], Subscript[τ, 4]]}]]
EstimatedDistribution[F4, MixtureDistribution[{0.65, 1 - 0.65},
{NormalDistribution[a, c], NormalDistribution[d, e]}]]
The code provides three different results in version 8.0 and version 10.2 as well. Only the last is appropriate. To my knowledge all are using NMinimize (MLE) internally.
Some users reported similar issues when variables/symbols are changed in other functions. I thought that has been fixed in version 10?
What does version 11 do?



MixtureDistribution[{0.65, 0.35}, {NormalDistribution[8.69107, 0.568114], NormalDistribution[5.62755, 2.06378]}], first one:MixtureDistribution[{0.65, 0.35}, {NormalDistribution[6.86847, 2.28485], NormalDistribution[8.646, 0.386817]}]– John Joseph M. Carrasco Aug 24 '17 at 11:33D1 = EstimatedDistribution[Log[W], MixtureDistribution[{0.65, 1 - 0.65}, {NormalDistribution[a1, a2], NormalDistribution[a3, a4]}]]vs `D2 = EstimatedDistribution[Log[W], MixtureDistribution[{0.65, 1 - 0.65}, {NormalDistribution[a3, a4], NormalDistribution[a1, a2]}]] – John Joseph M. Carrasco Aug 24 '17 at 11:39{NormalDistribution[q, c], NormalDistribution[d, e]}$\mapsto${NormalDistribution[a3, a4], NormalDistribution[a1, a2]}==={NormalDistribution[\[Alpha], c], NormalDistribution[d, e]}– John Joseph M. Carrasco Aug 24 '17 at 11:46NMinimizeandNMinimizecan't guarantee that it returns the same result in that case - even if they're symbolically equal up to a variable name change. – Searke Aug 24 '17 at 14:34WorkingPrecision -> 30gets one pretty much the same answer. – JimB Aug 24 '17 at 19:23