I'm studying the following short code in an answer:
dphi = Pi/30; (* angle *)
rend = 0.99; (* radius *)
pts = Table[
r*Exp[I N[phi, 30]], {phi, -Pi + dphi/2, Pi - dphi/2, dphi},
{r, 0, rend, rend/10}]; (* a table of points in the polar coordinate grid*)
toColor[z_] := List @@ ColorConvert[Hue[Arg[N[z]]/(2 Pi)], "RGB"]
(* generate colors *)
line[pts_] := line[pts, Identity]; (* define a function using the next one*)
line[pts_, func_] := Line[ReIm[func[pts]], VertexColors -> (toColor /@ pts)]
Graphics[{line /@ pts, line /@ Transpose[pts]}]
I can trace line by line to see how the functions Line[] and Graphics[] work. It looks not very natural and very smart to me.
Can this be translated to a version using ParametricPlot instead?

ParametricPlot[]does not have the ability to color mesh lines with a function instead of a solid color. If you're willing to sacrifice that, then yes, this is doable withParametricPlot[]. – J. M.'s missing motivation Sep 19 '17 at 00:22ParametricPlot[], you need to do some work:Show[Table[ParametricPlot[ReIm[r Exp[I t]], {r, 0, rend}, ColorFunction -> Function[{x, y}, Hue[Arg[x + I y]/(2 Pi)]], ColorFunctionScaling -> False], {t, -Pi + dphi/2, Pi - dphi/2, dphi}], Table[ParametricPlot[ReIm[r Exp[I t]], {t, -Pi + dphi/2, Pi - dphi/2}, ColorFunction -> Function[{x, y}, Hue[Arg[x + I y]/(2 Pi)]], ColorFunctionScaling -> False], {r, 0, rend, rend/10}], Axes -> None, PlotRange -> All]– J. M.'s missing motivation Sep 19 '17 at 00:30Show[]to bring them all together at the end. So, the two comments are definitely consistent. It's not doable with a single convenientParametricPlot[], but you can do it with a little work. – J. M.'s missing motivation Sep 19 '17 at 05:22