Update 1: Should handle fractional powers.
Maybe just looking at series expansion around 0?
lowestOrder[someExpr_, t_] :=
Series[someExpr, {t, 0,
0}] /. {SeriesData[t, 0, {a___}, b_, c_, d_] :> b/d,
a__ :> ∞}
Then:
SeedRandom[13];
Table[Rule[
TraditionalForm@
v@(someExpr =
Sum[RandomInteger[{-100,
100}] t^(RandomInteger[{-100, 100}]/
RandomInteger[{1, 4}]), {RandomInteger[{0, 7}]}]),
lowestOrder[someExpr, t]], 10] // TableForm
yields
$$
\begin{array}{l}
v\left(66 t^{45/2}+152 t^{12}\right)\to 12 \\
v\left(-32 t^{80/3}-22 t^{99/4}+65 \
t^{75/4}-\frac{17}{t^{34/3}}-\frac{24}{t^{43/3}}+\frac{75}{t^{51}}+56 \
t^{42}\right)\to -51 \\
v\left(-79 t^{41/2}+\frac{42}{t^{99}}-\frac{27}{t^3}\right)\to -99 \\
v (0)\to \infty \\
v\left(30 t^{37/2}-70 t^{38/3}-80 \
t^{29/4}-\frac{16}{t^{93}}+\frac{60}{t^{59}}-\frac{75}{t^{21}}\right)\to -93 \\
v\left(\frac{72}{t^{33/4}}+38 t^{55}-49 t^{33}\right)\to \
-\frac{33}{4} \\
v\left(25 t^{56/3}-42 t^{49/3}+47 t^{38/3}+\frac{47}{t^{79/3}}-59 \
t^7-10 t^3\right)\to -\frac{79}{3} \\
v\left(-46 \
t^{37/4}-\frac{6}{t^{75/4}}+\frac{35}{t^{77/4}}-\frac{31}{t^{41}}-64 \
t^{23}-72 t^{11}\right)\to -41 \\
v\left(30 \
t^{94/3}-\frac{59}{t^{98}}+\frac{21}{t^{33}}-\frac{69}{t^{10}}+\frac{\
49}{t^3}\right)\to -98 \\
v\left(-90 t^{11}\right)\to 11 \\
\end{array}
$$
Update 2: Clarifying return of valuations of non-vanishing constants e.g. v(32).
I'm not familiar with valuation conventions here. If valuation of non-vanishing constants should be 0, but valuation of strict expression v(0) should be $\infty$ then should rather define:
lowestOrder[someExpr_, t_] :=
Series[someExpr, {t, 0,
0}] /. {SeriesData[t, 0, {a___}, b_, c_, d_] :> b/d,
0 :> ∞, a_ :> 0}
Update 3: Addressing CarlWoll's excellent point:
Despite its generosity in finite examples, SeriesData isn't contractually obligated to return the leading term -- in fact it has been known to offer a bound as to what the leading term won't be less than.
If we get suspicious about potential output of SeriesData, can riff off CarlWoll's leadingSeries answer here:
leadingSeriesDegree[expr_,
x_] := (Normal[
expr /. x -> (x + O[x]^2) /.
a_List :> Take[a, 1]]) /. {b___ Power[x, c_] :> c,
Power[x, c_] :> c, a_ x :> 1, x :> 1, 0 :> ∞, a_ :> 0}
valuation[expr_, x_] := First[Exponent[expr, x, Min]]– Daniel Lichtblau Nov 19 '17 at 15:41