0

I'm new in Mathematica (first time using it) and I'm trying perform a fit, using NonLinearModelFit and I have some doubts and also I'm not sure that I'm doing in a correct way. So, to try explain easily my problem.

I have 24 files, each file with 15 lines. Then MyData is the first column when I do "allData" (1-24), the second column the time (0-14), the 3 column my data. Then I have 16 models, and in each model I have the variable "t" (changing to 1 to 24 - same number of files) that will change with the "Do". So for each t, I will read one of my data and use one of my files. In other words, I will perform the fit for the 16 models for each file (1-24).

(*reading my data*)
data= Import["/Users/gbailas/Documents/correlatorstofit/fit_version2/fort_1013.
txt", {"Data", {All}}]
(*I'm reading one by one and separating then)
data4 = data[[1 ;; 30, 1 ;; 2]]
(*Doing the same with my error)
error5 = data[[All, 3]]
(*I'm doing it for my 16 files)
allData = 
Join[{1, Sequence @@ #} & /@ data1, {2, Sequence @@ #} & /@ 
data2, {3, Sequence @@ #} & /@ data3, {4, Sequence @@ #} & /@ 
data4, {5, Sequence @@ #} & /@ data5, {6, Sequence @@ #} & /@ 
data6, {7, Sequence @@ #} & /@ data7, {8, Sequence @@ #} & /@ 
data8, {9, Sequence @@ #} & /@ data9, {10, Sequence @@ #} & /@ 
data10, {11, Sequence @@ #} & /@ data11, {12, Sequence @@ #} & /@ 
data12, {13, Sequence @@ #} & /@ data13, {14, Sequence @@ #} & /@ 
data14, {15, Sequence @@ #} & /@ data15, {16, Sequence @@ #} & /@ 
data16, {17, Sequence @@ #} & /@ data17, {18, Sequence @@ #} & /@ 
data18, {19, Sequence @@ #} & /@ data19, {20, Sequence @@ #} & /@ 
data20, {21, Sequence @@ #} & /@ data21, {22, Sequence @@ #} & /@ 
data22, {23, Sequence @@ #} & /@ data23, {24, Sequence @@ #} & /@ 
data24]
myF[index_] := 
KroneckerDelta[index - 1] model1 + KroneckerDelta[index - 2] model2 +
KroneckerDelta[index - 3] model3 + 
KroneckerDelta[index - 4] model4 + 
KroneckerDelta[index - 5] model5 + 
KroneckerDelta[index - 6] model6 + 
KroneckerDelta[index - 7] model7 + 
KroneckerDelta[index - 8] model8 + 
KroneckerDelta[index - 9] model9 + 
KroneckerDelta[index - 10] model10 + 
KroneckerDelta[index - 11] model11 + 
KroneckerDelta[index - 12] model12 + 
KroneckerDelta[index - 13] model13 + 
KroneckerDelta[index - 14] model14 + 
KroneckerDelta[index - 15] model15 + 
KroneckerDelta[index - 16] model16
(*Now, I'm writing my models to fit: I have 16 and they are similar)
   Do[
     model1 = 0.5*x11*11*(Exp[t*x1] + Exp[(64 - t)*x1]) + 
0.5*x12*x12*(Exp[t*x2] + Exp[(64 - t)*x2]) + 0.5*x13*(Exp[t*x3] + Exp[(64 - t)*x3]);

model2 = 
0.5*x11*x21*(Exp[t*x1] + Exp[(64 - t)*x1]) + 
0.5*x12*x22*(Exp[t*x2] + Exp[(64 - t)*x2]) + 
0.5*x23*(Exp[t*x4] + Exp[(64 - t)*x4]);

 model3 = 
 0.5*x11*x31*(Exp[t*x1] + Exp[(64 - t)*x1]) + 
 0.5*x12*x32*(Exp[t*x2] + Exp[(64 - t)*x2]) + 
 0.5*x33*(Exp[t*x5] + Exp[(64 - t)*x5]);

 model4 = 
 0.5*x11*x41*(Exp[t*x1] + Exp[(64 - t)*x1]) + 
 0.5*x12*x42*(Exp[t*x2] + Exp[(64 - t)*x2]) + 
 0.5*x43*(Exp[t*x6] + Exp[(64 - t)*x6]); 

 model5 = model2;

 model6 = 
 0.5*x21*x21*(Exp[t*x1] + Exp[(64 - t)*x1]) + 
 0.5*x22*x22*(Exp[t*x2] + Exp[(64 - t)*x2]) + 
 0.5*x53*(Exp[t*x7] + Exp[(64 - t)*x7]);

 model7 = 
 0.5*x21*x31*(Exp[t*x1] + Exp[(64 - t)*x1]) + 
 0.5*x22*x32*(Exp[t*x2] + Exp[(64 - t)*x2]) + 
 0.5*x63*(Exp[t*x8] + Exp[(64 - t)*x8]);

 model8 = 
 0.5*x21*x41*(Exp[t*x1] + Exp[(64 - t)*x1]) + 
 0.5*x22*x42*(Exp[t*x2] + Exp[(64 - t)*x2]) + 
 0.5*x73*(Exp[t*x9] + Exp[(64 - t)*x9]);
 model9 = model3;
 model10 = model7;

 model11 = 
 0.5*x31*x31*(Exp[t*x1] + Exp[(64 - t)*x1]) + 
 0.5*x32*x32*(Exp[t*x2] + Exp[(64 - t)*x2]) + 
 0.5*x83*(Exp[t*x10] + Exp[(64 - t)*x10]);

 model12 = 
 0.5*x31*x41*(Exp[t*x1] + Exp[(64 - t)*x1]) + 
 0.5*x32*x42*(Exp[t*x2] + Exp[(64 - t)*x2]) + 
 0.5*x93*(Exp[t*x11b] + Exp[(64 - t)*x11b]);

 model13 = model4;
 model14 = model8;
 model15 = model12;

 model16 = 
 0.5*x41*x41*(Exp[t*x1] + Exp[(64 - t)*x1]) + 
 0.5*x42*x42*(Exp[t*x2] + Exp[(64 - t)*x2]) + 
 0.5*x103*(Exp[t*x12b] + Exp[(64 - t)*x12b]);   

 Print[fit = 
 NonlinearModelFit[allData, 
  myF[index], {{x11, 0.03}, {x12, 0.03}, {x13, 0.03}, {x21, 
  0.03}, {x22, 0.03}, {x23, 0.03}, {x31, 0.03}, {x32, 0.03}, {x33,
   0.03}, {x41, 0.03}, {x42, 0.03}, {x43, 0.03}, {x53, 
  0.03}, {x63, 0.03}, {x73, 0.03}, {x83, 0.03}, {x93, 
  0.03}, {x103, 0.03}, {x1, 0.98}, {x2, 
  1.2}, {x3}, {x4}, {x5}, {x6}, {x7}, {x8}, {x9}, {x10}, {x11b}, \
  {x12b}}, {index, x}, 
   Weights -> 
   Join[error1, error2, error3, error4, error5, error6, error7, 
   error8, error9, error10, error11, error12, error13, error14, 
   error15, error16, error17, error18, error19, error20, error21, 
   error22, error23, error24]]],
  {t, 24}]

nlm["BestFitParameters"]
nlm["ParameterConfidenceIntervalTable"]
nlm["CorrelationMatrix"]

My data:

    {{1, 0, 0.000383671}, {1, 1, 0.0000706219}, {1, 2, 0.00032182}, {1, 3,
    0.0000501746}, {1, 4, 0.0000705337}, {1, 5, 0.000016072}, {1, 6, 
   0.0000306593}, {1, 7, 6.23339*10^-6}, {1, 8, 0.000323322}, {1, 9, 
   0.0000282914}, {1, 10, 7.41876*10^-6}, {1, 11, 0.0000505202}, {1, 
   12, 5.73212*10^-6}, {1, 13, 7.97754*10^-6}, {1, 14, 
   8.55089*10^-7}, {2, 0, 0.000127432}, {2, 1, 0.0000256319}, {2, 2, 
   0.000100011}, {2, 3, 0.0000179721}, {2, 4, 0.0000256286}, {2, 5, 
   5.92758*10^-6}, {2, 6, 0.000010643}, {2, 7, 2.25945*10^-6}, {2, 8, 
   0.000100443}, {2, 9, 9.81189*10^-6}, {2, 10, 0.0000264367}, {2, 11, 
   2.55395*10^-6}, {2, 12, 0.0000180715}, {2, 13, 2.0765*10^-6}, {2, 
   14, 2.74392*10^-6}, {3, 0, 0.0000439533}, {3, 1, 9.36508*10^-6}, {3,
   2, 0.000032982}, {3, 3, 6.5074*10^-6}, {3, 4, 9.36169*10^-6}, {3, 
   5, 2.19089*10^-6}, {3, 6, 3.76078*10^-6}, {3, 7, 8.24936*10^-7}, {3,
   8, 0.0000331415}, {3, 9, 3.46065*10^-6}, {3, 10, 
   8.65011*10^-6}, {3, 11, 8.95256*10^-7}, {3, 12, 6.54521*10^-6}, {3, 
   13, 7.58665*10^-7}, {3, 14, 9.62327*10^-7}, {4, 0, 
   0.0000155284}, {4, 1, 3.43991*10^-6}, {4, 2, 0.0000113013}, {4, 3, 
   2.36799*10^-6}, {4, 4, 3.43626*10^-6}, {4, 5, 8.12941*10^-7}, {4, 6,
   1.34602*10^-6}, {4, 7, 3.02481*10^-7}, {4, 8, 0.0000113686}, {4, 9,
   1.23722*10^-6}, {4, 10, 2.93995*10^-6}, {4, 11, 3.17998*10^-7}, {4,
   12, 2.38758*10^-6}, {4, 13, 2.78251*10^-7}, {4, 14, 
   3.4201*10^-7}, {5, 0, 5.5762*10^-6}, {5, 1, 1.2684*10^-6}, {5, 2, 
   3.96688*10^-6}, {5, 3, 8.68586*10^-7}, {5, 4, 1.26848*10^-6}, {5, 5,
   3.02467*10^-7}, {5, 6, 4.86171*10^-7}, {5, 7, 1.11531*10^-7}, {5, 
   8, 3.99318*10^-6}, {5, 9, 4.47042*10^-7}, {5, 10, 
   1.02641*10^-6}, {5, 11, 1.14352*10^-7}, {5, 12, 8.75988*10^-7}, {5, 
   13, 1.02661*10^-7}, {5, 14, 1.2308*10^-7}, {6, 0, 
   2.02352*10^-6}, {6, 1, 4.69155*10^-7}, {6, 2, 1.41666*10^-6}, {6, 3,
   3.19562*10^-7}, {6, 4, 4.68886*10^-7}, {6, 5, 1.12495*10^-7}, {6, 
   6, 1.76912*10^-7}, {6, 7, 4.1183*10^-8}, {6, 8, 1.42561*10^-6}, {6, 
   9, 1.62676*10^-7}, {6, 10, 3.64851*10^-7}, {6, 11, 
   4.13672*10^-8}, {6, 12, 3.22381*10^-7}, {6, 13, 3.79496*10^-8}, {6, 
   14, 4.46784*10^-8}, {7, 0, 7.40178*10^-7}, {7, 1, 
   1.73899*10^-7}, {7, 2, 5.12031*10^-7}, {7, 3, 1.17975*10^-7}, {7, 4,
   1.73924*10^-7}, {7, 5, 4.18974*10^-8}, {7, 6, 6.47739*10^-8}, {7, 
   7, 1.52509*10^-8}, {7, 8, 5.15461*10^-7}, {7, 9, 5.95719*10^-8}, {7,
   10, 1.31406*10^-7}, {7, 11, 1.51048*10^-8}, {7, 12, 
   1.19095*10^-7}, {7, 13, 1.40664*10^-8}, {7, 14, 1.63467*10^-8}, {8, 
   0, 2.72305*10^-7}, {8, 1, 6.45798*10^-8}, {8, 2, 1.86712*10^-7}, {8,
   3, 4.37123*10^-8}, {8, 4, 6.46247*10^-8}, {8, 5, 
   1.56087*10^-8}, {8, 6, 2.38353*10^-8}, {8, 7, 5.66359*10^-9}, {8, 8,
   1.87744*10^-7}, {8, 9, 2.18757*10^-8}, {8, 10, 4.77339*10^-8}, {8, 
  11, 5.55168*10^-9}, {8, 12, 4.41001*10^-8}, {8, 13, 
  5.21541*10^-9}, {8, 14, 6.00597*10^-9}, {9, 0, 1.00577*10^-7}, {9, 
  1, 2.40455*10^-8}, {9, 2, 6.85328*10^-8}, {9, 3, 1.62522*10^-8}, {9,
  4, 2.40433*10^-8}, {9, 5, 5.83217*10^-9}, {9, 6, 
 8.80243*10^-9}, {9, 7, 2.10974*10^-9}, {9, 8, 6.89136*10^-8}, {9, 9,
  8.09048*10^-9}, {9, 10, 1.74927*10^-8}, {9, 11, 2.04672*10^-9}, {9,
  12, 1.63687*10^-8}, {9, 13, 1.94204*10^-9}, {9, 14, 
  2.22003*10^-9}, {10, 0, 3.72676*10^-8}, {10, 1, 8.95541*10^-9}, {10,
   2, 2.52647*10^-8}, {10, 3, 6.04506*10^-9}, {10, 4, 
   8.95768*10^-9}, {10, 5, 2.17615*10^-9}, {10, 6, 3.25928*10^-9}, {10,
   7, 7.85561*10^-10}, {10, 8, 2.53829*10^-8}, {10, 9, 
   2.99893*10^-9}, {10, 10, 6.42558*10^-9}, {10, 11, 
  7.56666*10^-10}, {10, 12, 6.08207*10^-9}, {10, 13, 
  7.24365*10^-10}, {10, 14, 8.21026*10^-10}, {11, 0, 
  1.38419*10^-8}, {11, 1, 3.34183*10^-9}, {11, 2, 9.34098*10^-9}, {11,
  3, 2.24476*10^-9}, {11, 4, 3.33914*10^-9}, {11, 5, 
  8.12751*10^-10}, {11, 6, 1.2087*10^-9}, {11, 7, 
  2.92251*10^-10}, {11, 8, 9.39595*10^-9}, {11, 9, 
  1.11212*10^-9}, {11, 10, 2.37496*10^-9}, {11, 11, 
  2.8132*10^-10}, {11, 12, 2.26579*10^-9}, {11, 13, 
  2.6946*10^-10}, {11, 14, 3.04403*10^-10}, {12, 0, 
  5.14901*10^-9}, {12, 1, 1.247*10^-9}, {12, 2, 3.461*10^-9}, {12, 3, 
  8.36024*10^-10}, {12, 4, 1.24652*10^-9}, {12, 5, 
  3.03828*10^-10}, {12, 6, 4.49178*10^-10}, {12, 7, 
  1.08987*10^-10}, {12, 8, 3.47799*10^-9}, {12, 9, 
  4.13095*10^-10}, {12, 10, 8.78796*10^-10}, {12, 11, 
  1.04439*10^-10}, {12, 12, 8.42875*10^-10}, {12, 13, 
  1.0053*10^-10}, {12, 14, 1.12985*10^-10}, {13, 0, 
  1.9168*10^-9}, {13, 1, 4.65382*10^-10}, {13, 2, 1.28573*10^-9}, {13,
   3, 3.11567*10^-10}, {13, 4, 4.65198*10^-10}, {13, 5, 
  1.13574*10^-10}, {13, 6, 1.67166*10^-10}, {13, 7, 
  4.06472*10^-11}, {13, 8, 1.29171*10^-9}, {13, 9, 
  1.5351*10^-10}, {13, 10, 3.26685*10^-10}, {13, 11, 
  3.87996*10^-11}, {13, 12, 3.14184*10^-10}, {13, 13, 
  3.74167*10^-11}, {13, 14, 4.21464*10^-11}, {14, 0, 
  7.14198*10^-10}, {14, 1, 1.73651*10^-10}, {14, 2, 
  4.7871*10^-10}, {14, 3, 1.16543*10^-10}, {14, 4, 
  1.73648*10^-10}, {14, 5, 4.24223*10^-11}, {14, 6, 
  6.23357*10^-11}, {14, 7, 1.52245*10^-11}, {14, 8, 
  4.7958*10^-10}, {14, 9, 5.7062*10^-11}, {14, 10, 
  1.21766*10^-10}, {14, 11, 1.44665*10^-11}, {14, 12, 
  1.17051*10^-10}, {14, 13, 1.39577*10^-11}, {14, 14, 
  1.57245*10^-11}, {15, 0, 2.66262*10^-10}, {15, 1, 
  6.48156*10^-11}, {15, 2, 1.78493*10^-10}, {15, 3, 
  4.3535*10^-11}, {15, 4, 6.48186*10^-11}, {15, 5, 
  1.58306*10^-11}, {15, 6, 2.32703*10^-11}, {15, 7, 
  5.68821*10^-12}, {15, 8, 1.79102*10^-10}, {15, 9, 
   2.13051*10^-11}, {15, 10, 4.54559*10^-11}, {15, 11, 
  5.40509*10^-12}, {15, 12, 4.37823*10^-11}, {15, 13, 
  5.21523*10^-12}, {15, 14, 5.86822*10^-12}, {16, 0, 
  9.93564*10^-11}, {16, 1, 2.42161*10^-11}, {16, 2, 
  6.6572*10^-11}, {16, 3, 1.62293*10^-11}, {16, 4, 
  2.42239*10^-11}, {16, 5, 5.91841*10^-12}, {16, 6, 
  8.68707*10^-12}, {16, 7, 2.12454*10^-12}, {16, 8, 
  6.67592*10^-11}, {16, 9, 7.94842*10^-12}, {16, 10, 
  1.69107*10^-11}, {16, 11, 2.01434*10^-12}, {16, 12, 
  1.63438*10^-11}, {16, 13, 1.94791*10^-12}, {16, 14, 
  2.1877*10^-12}, {17, 0, 3.70976*10^-11}, {17, 1, 
  9.05175*10^-12}, {17, 2, 2.48654*10^-11}, {17, 3, 
  6.07012*10^-12}, {17, 4, 9.05976*10^-12}, {17, 5, 
 2.21581*10^-12}, {17, 6, 3.24892*10^-12}, {17, 7, 
  7.95438*10^-13}, {17, 8, 2.4954*10^-11}, {17, 9, 
 2.97675*10^-12}, {17, 10, 6.31831*10^-12}, {17, 11, 
 7.52379*10^-13}, {17, 12, 6.11849*10^-12}, {17, 13, 
 7.31358*10^-13}, {17, 14, 8.16784*10^-13}, {18, 0, 
 1.38582*10^-11}, {18, 1, 3.3849*10^-12}, {18, 2, 
 9.28409*10^-12}, {18, 3, 2.26626*10^-12}, {18, 4, 
 3.38852*10^-12}, {18, 5, 8.28689*10^-13}, {18, 6, 
 1.21432*10^-12}, {18, 7, 2.96867*10^-13}, {18, 8, 
 9.34011*10^-12}, {18, 9, 1.1125*10^-12}, {18, 10, 
 2.35919*10^-12}, {18, 11, 2.81116*10^-13}, {18, 12, 
 2.29451*10^-12}, {18, 13, 2.73739*10^-13}, {18, 14, 
 3.04584*10^-13}, {19, 0, 5.17704*10^-12}, {19, 1, 
 1.26442*10^-12}, {19, 2, 3.4657*10^-12}, {19, 3, 8.474*10^-13}, {19,
 4, 1.26592*10^-12}, {19, 5, 3.09502*10^-13}, {19, 6, 
 4.53599*10^-13}, {19, 7, 1.11042*10^-13}, {19, 8, 
 3.49011*10^-12}, {19, 9, 4.15734*10^-13}, {19, 10, 
 8.7906*10^-13}, {19, 11, 1.04643*10^-13}, {19, 12, 
 8.58117*10^-13}, {19, 13, 1.02341*10^-13}, {19, 14, 
 1.13606*10^-13}, {20, 0, 1.93368*10^-12}, {20, 1, 
 4.7277*10^-13}, {20, 2, 1.29376*10^-12}, {20, 3, 
 3.1718*10^-13}, {20, 4, 4.72985*10^-13}, {20, 5, 
 1.15854*10^-13}, {20, 6, 1.69364*10^-13}, {20, 7, 
 4.15353*10^-14}, {20, 8, 1.30362*10^-12}, {20, 9, 
 1.55619*10^-13}, {20, 10, 3.28251*10^-13}, {20, 11, 
 3.92229*10^-14}, {20, 12, 3.20549*10^-13}, {20, 13, 
 3.82868*10^-14}, {20, 14, 4.24187*10^-14}, {21, 0, 
 7.22578*10^-13}, {21, 1, 1.76822*10^-13}, {21, 2, 
 4.83091*10^-13}, {21, 3, 1.18379*10^-13}, {21, 4, 
 1.76833*10^-13}, {21, 5, 4.33384*10^-14}, {21, 6, 
 6.32304*10^-14}, {21, 7, 1.55028*10^-14}, {21, 8, 
 4.87369*10^-13}, {21, 9, 5.81692*10^-14}, {21, 10, 
 1.22859*10^-13}, {21, 11, 1.46754*10^-14}, {21, 12, 
 1.19753*10^-13}, {21, 13, 1.43013*10^-14}, {21, 14, 
 1.58599*10^-14}, {22, 0, 2.69953*10^-13}, {22, 1, 
 6.61098*10^-14}, {22, 2, 1.80389*10^-13}, {22, 3, 
 4.42085*10^-14}, {22, 4, 6.60753*10^-14}, {22, 5, 
 1.62041*10^-14}, {22, 6, 2.36236*10^-14}, {22, 7, 
 5.79979*10^-15}, {22, 8, 1.82287*10^-13}, {22, 9, 
 2.17767*10^-14}, {22, 10, 4.5868*10^-14}, {22, 11, 
 5.48248*10^-15}, {22, 12, 4.4744*10^-14}, {22, 13, 
 5.34856*10^-15}, {22, 14, 5.92304*10^-15}, {23, 0, 
 1.00925*10^-13}, {23, 1, 2.47257*10^-14}, {23, 2, 
 6.74046*10^-14}, {23, 3, 1.65415*10^-14}, {23, 4, 
 2.47289*10^-14}, {23, 5, 6.06419*10^-15}, {23, 6, 
 8.83337*10^-15}, {23, 7, 2.17051*10^-15}, {23, 8, 
 6.81016*10^-14}, {23, 9, 8.14167*10^-15}, {23, 10, 
 1.72029*10^-14}, {23, 11, 2.05734*10^-15}, {23, 12, 
 1.67284*10^-14}, {23, 13, 2.00005*10^-15}, {23, 14, 
 2.21597*10^-15}, {24, 0, 3.77596*10^-14}, {24, 1, 
 9.25321*10^-15}, {24, 2, 2.5193*10^-14}, {24, 3, 
 6.19405*10^-15}, {24, 4, 9.25753*10^-15}, {24, 5, 
 2.26901*10^-15}, {24, 6, 3.30317*10^-15}, {24, 7, 
 8.12531*10^-16}, {24, 8, 2.54431*10^-14}, {24, 9, 
 3.03733*10^-15}, {24, 10, 6.45621*10^-15}, {24, 11, 
 7.72003*10^-16}, {24, 12, 6.24942*10^-15}, {24, 13, 
 7.45508*10^-16}, {24, 14, 8.30793*10^-16}}

Output

 {
 {"", "Estimate", "Standard Error", "Confidence Interval"},
 {x11, -0.0785915, 2.9389*10^-17, {-0.0785915, -0.0785915}},
 {x12, 0.0270872, 2.22768*10^-16, {0.0270872, 0.0270872}},
 {x13, -0.258502, 3.23456*10^-17, {-0.258502, -0.258502}},
 {x21, -2.62527, 2.99177*10^-17, {-2.62527, -2.62527}},
 {x22, 0.0318795, 5.22249*10^-16, {0.0318795, 0.0318795}},
 {x23, -0.174377, 7.64089*10^-17, {-0.174377, -0.174377}},
 {x31, 1.25575, 1.45992*10^-17, {1.25575, 1.25575}},
 {x32, 0.0164087, 2.05095*10^-16, {0.0164087, 0.0164087}},
 {x33, -0.241841, 2.53*10^-17, {-0.241841, -0.241841}},
 {x41, -1.92292, 6.94623*10^-17, {-1.92292, -1.92292}},
 {x42, 0.0184719, 8.99529*10^-16, {0.0184719, 0.0184719}},
 {x43, -0.194541, 1.41065*10^-16, {-0.194541, -0.194541}},
 {x53, -0.131034, 1.80937*10^-16, {-0.131034, -0.131034}},
 {x63, -0.0177579, 8.0498*10^-16, {-0.0177579, -0.0177579}},
 {x73, -0.100532, 2.29897*10^-16, {-0.100532, -0.100532}},
 {x83, -0.465108, 3.0238*10^-17, {-0.465108, -0.465108}},
 {x93, -0.657169, 2.3635*10^-18, {-0.657169, -0.657169}},
 {x103, -1.24714, 6.88846*10^-17, {-1.24714, -1.24714}},
 {x1, 0.965638, 1.0429*10^-15, {0.965638, 0.965638}},
 {x2, 1.19089, 2.31676*10^-16, {1.19089, 1.19089}},
 {x3, 1.04039, 3.34455*10^-16, {1.04039, 1.04039}},
 {x4, 1.05891, 5.32957*10^-16, {1.05891, 1.05891}},
 {x5, 1.03273, 2.44744*10^-16, {1.03273, 1.03273}},
 {x6, 1.04272, 1.09771*10^-15, {1.04272, 1.04272}},
 {x7, 1.0845, 9.48356*10^-16, {1.0845, 1.0845}},
 {x8, 1.06604, 5.71789*10^-16, {1.06604, 1.06604}},
 {x9, 1.0803, 9.24482*10^-16, {1.0803, 1.0803}},
 {x10, 1.01802, 5.62558*10^-16, {1.01802, 1.01802}},
 {x11b, 0.908343, 6.21287*10^-17, {0.908343, 0.908343}},
 {x12b, 1.00688, 3.43634*10^-15, {1.00688, 1.00688}}

Then, I'm not sure that this fit is correct, because for me the errors are too small, even when I don't consider the weights my errors are like this. So, maybe there is something wrong in this fit. Do you think I'm doing in the correct way?

I accept all advices and suggestions. I have tried to use all my information here to explain my problem.

Maybe this is not a good way to perform this fit, but since is my first time using Mathematica and I'm doing it alone, I'm trying in my way.

Thanks for help me. Best wishes, Gabriela

Correlation Matrix

Gabriela
  • 1
  • 2
  • Welcome to Mathematica.SE! I suggest the following: 1) As you receive help, try to give it too, by answering questions in your area of expertise. 2) Take the tour! 3) When you see good questions and answers, vote them up by clicking the gray triangles, because the credibility of the system is based on the reputation gained by users sharing their knowledge. Also, please remember to accept the answer, if any, that solves your problem, by clicking the checkmark sign! – Michael E2 Oct 05 '17 at 15:04
  • Was the output and fit reasonable? You don't mention the output or any error messages. – JimB Oct 05 '17 at 15:44
  • Have you seen this, this, this or this? – aardvark2012 Oct 05 '17 at 22:42
  • @aardvark2012 I've seen all of this. – Gabriela Oct 06 '17 at 10:48
  • @JimB There is no error message, Mathematica is finding some answers, but they are not completely correct for my case. What I need to do is a loop to make a fit for all t=0, then t=1 and so on. – Gabriela Oct 06 '17 at 10:48
  • Maybe it's just me but your code seems too complex, the question and responses too vague, and not enough data supplied to check anything out. Please consider giving your code and data for say just 2 or 3 models and loose the weights (at least for now). – JimB Oct 06 '17 at 15:41
  • @JimB Sorry for this delay, but I was working on my code. Now I have put all the information. I hope it's better. Thank you – Gabriela Oct 11 '17 at 09:00
  • Would you add a comment (in the question above) that explicitly states what columns in "My data" represent? The first column goes from 1 to 24. The second goes from 0 to 14. And yet you have 16 models. How can either of those columns be the index for the model? Is "My data" the same as allData ? And you mention 30 lines for each of the 16 files. I'm confused. – JimB Oct 11 '17 at 14:23
  • @JimB I have edited my question. Thanks for your help. And yes Mydata=allData – Gabriela Oct 11 '17 at 15:42

0 Answers0