I'm using Agglomerate function to find clusters of my experimental points. I have about 20 points with 10 parameters each. It seems it works fine, but there are plenty of Linkage and DistanceFunction parameters, which impact the final results. The question is .. what does it mean? In which cases clusters should be stable regardless Linkage and DistanceFunction and what its mean if they are different for different Linkage and DistanceFunction? Can I trust such clustering? What are the most "classical" values Linkage and DistanceFunction (default ones?) and why?
Here is my data points:
{{-0.54449, -0.102155, -0.864301, -0.845674, 1.72069, 0.162305, -0.319707, 0.370332, -0.569251, 0.251684}, {-0.823224, 0.466534, -0.275458, -1.13092, -0.630258, -0.421657, -0.25189, -0.764118, 0.0582215, 0.0580152}, {-0.716112, -0.670013, -1.26653, -1.02131, -0.98399, -0.585077, -1.87848, -1.59877, -0.865598, -0.397251}, {-0.615645, -3.06315, 2.06996, -0.918491, 2.83773, 3.6351, 3.05807, 1.20477, -2.63819, -2.88736}, {-0.76705, 0.223083, -0.583763, -1.07343, -0.164866, -0.427301, -0.575523, -0.767708, -0.175055, -0.300879}, {-0.66603, -0.877367, -1.04268, -0.970053, -0.412967, -0.275404, -1.44685, -1.40288, -1.19409, -1.39323}, {-0.754355, -2.75233, -1.70565, -1.06044, 0.52232, -0.0640453, -1.50926, -2.95488, -2.005, -0.977144}, {-0.801445, 0.625306, -0.129547, 0.914166, -0.802012, -0.82025, -0.415802, -0.0372765, 0.310353, 0.203098}, {-1.09105, 0.587188, -0.527171, 0.785344, -0.0154634, -1.69842, -0.703799, -0.993652, 0.317917, -0.182357}, {-0.662017, 0.637865, -0.39368, 1.12361, 0.119336, -0.474191, 0.143626, 0.381655, 0.226684, 0.872835}, {-0.622624, -1.1049, -1.01067, -0.925633, 2.81144, 0.707725, -0.58375, -0.157638, -1.16611, -0.116548}, {-0.795863, -0.405891, -1.3995, -1.10292, 0.996617, -0.0758285, -0.953197, -0.703437, -0.436583, 1.5165}, {-0.850699, 0.422063, -0.0632891, -1.04637, -0.568149, -0.0730285, 0.064865, -0.296008, -0.0367494, 0.353338}, {-0.771168, 0.386542, 0.169187, -1.07765, -0.305672, 0.411273, 0.416447, -0.290914, 0.0557528, -0.0676787}, {-0.729378, 0.625545, -0.292952, 0.716006, 0.114164, -0.156678, 0.266517, 0.315006, 0.268425, -0.188667}, {-0.669941, -0.397554, -0.445959, -0.974056, 0.0886582, 0.543935, 0.116312, 0.0275719, -0.64273, 0.297232}, {-0.589716, -0.661248, -1.12576, -0.891957, -0.11373, -0.0593349, -0.838607, -0.574122, -0.829611, -0.236374}, {1.53941, 0.643217, 1.82853, 1.28692, -0.829425, 1.89118, 1.00785, 1.32393, 1.64218, 3.22573}, {1.2971, 0.576342, 0.217707, 1.10215, -0.329005, -1.22966, 0.323302, 0.398486, 0.427067, 0.091264}, {0.599277, 0.494151, 1.41632, 1.40133, -0.395735, 0.769642, 1.2459, 1.07979, 1.04014, -0.325443}, {1.34088, 0.635507, 0.605183, 1.02062, -0.384553, -0.399112, 0.470923, 0.859018, 0.97534, 0.106176}, {1.41958, 0.64819, 1.00971, 0.784724, -0.807776, -0.586251, -0.331264, 0.338729, 0.885708, 0.464992}, {1.40725, 0.61599, 0.81094, 0.899117, -0.380767, -0.0745943, 0.977698, 0.984784, 0.912223, -0.136263}, {1.12707, 0.56912, 0.461681, 0.611823, -0.751744, -0.556647, -0.141958, 0.485123, 0.811634, -0.447893}, {1.45781, 0.655744, 0.655285, 0.824038, -0.664409, -0.612903, 0.2455, 0.791632, 0.880826, 0.150893}, {1.58214, 0.676405, 1.14394, 0.697673, -0.424202, -0.0852577, 0.750401, 0.949265, 0.975729, -0.000260021}, {0.700286, 0.545816, 0.738454, 0.871389, -0.246233, 0.554472, 0.862678, 1.03132, 0.770765, 0.0655914}}







