The first group of answers is correct. The second group of answers is wrong, in my opinion. In all cases, removing the condition, True, yields a correct answer. Can someone explain? I haven't checked the minimization and maximization functions for this problem yet.
iMax=4;(*or greater*)
FindFit[1+0 Range@iMax,{5.179098401833815*^-7*MBB,True},{MBB},{ds}]
FindFit[Table[{i,1},{i,iMax}],{5.179098401833815*^-7*MBB,True},{MBB},{ds}]
NonlinearModelFit[1+0 Range@iMax,{5.179098401833815*^-7*MBB,True},{MBB},{ds}]["BestFitParameters"]
NonlinearModelFit[Table[{i,1},{i,iMax}],{5.179098401833815*^-7*MBB,True},{MBB},{ds}]["BestFitParameters"]
(*{MBB->1.91815*^6}*)
(*{MBB->1.91815*^6}*)
(*{MBB->1.91815*^6}*)
(*{MBB->1.91815*^6}*)
iMax=3;(*also works with 1 or 2*)
FindFit[1+0 Range@iMax,{5.179098401833815*^-7*MBB,True},{MBB},{ds}]
FindFit[Table[{i,1},{i,iMax}],{5.179098401833815*^-7*MBB,True},{MBB},{ds}]
NonlinearModelFit[1+0 Range@iMax,{5.179098401833815*^-7*MBB,True},{MBB},{ds}]["BestFitParameters"]
NonlinearModelFit[Table[{i,1},{i,iMax}],{5.179098401833815*^-7*MBB,True},{MBB},{ds}]["BestFitParameters"]
(*{MBB->1.}*)
(*{MBB->1.}*)
(*{MBB->1.}*)
(*{MBB->1.}*)
iMax=3addingWorkingPrecision -> 30or using{5179098401833815/10^7*MBB, True}gets one the "correct" answer. This is not a bug. For more issues (and solutions) to fitting functions to data see https://mathematica.stackexchange.com/questions/139038/what-are-some-common-issues-with-fitting-functions-to-data. – JimB Oct 17 '17 at 18:45NMinimizecall would help. – JimB Oct 17 '17 at 19:54norm@iMax_=Sqrt[iMax]*Abs[5.179098401833815*^-7*MBB-1];NMinimize[{norm@3,True},MBB]as requested – Chris Chiasson Oct 18 '17 at 13:10