12

I'm trying to combine graphics using Grid such that I have a ListPlot[] in the middle and a histogram on the top and right axes. I am 95% there, but can't figure how to git rid of the white space between the top histogram and the ListPlot. If I set Spacings -> {-0.15, -1} I begin to lose the bottom of the histogram and still have white space.

Here's a minimal working example:

data = RandomReal[ BinormalDistribution[{0, 0}, {1, 1}, 0.5], 50];


histData1 = GetColumn[data, 1];
histData2 = GetColumn[data, 2];

(histPlot1 = Histogram[histData1, 15, BarOrigin -> Bottom, 
    FrameTicks -> {None, {1, 5, 10}}, 
    AspectRatio -> 1/5, ImageSize -> 250,
    ImagePadding -> {{48, 0}, {10, 0}},
    PlotLabel -> "PlotLabel",
    FrameLabel -> {None, "Count"} ]);

listPlot = ListPlot[data, PlotRange -> All,
   FrameLabel -> {"X", "Y", None, None},
   Frame -> True,
   PlotRegion -> {{0, 1}, {0, 1}},
   ImagePadding -> {{Automatic, Automatic}, {Automatic, 2}},
   ImageMargins -> {{0, 0}, {0, 0}}
   ];

(histPlot2 = Histogram[histData2, 12,
    BarOrigin -> Left,
    ImagePadding -> {{1, 0}, {62.5, 30}},
    FrameLabel -> { "Count", None},
    FrameTicks -> {{1, 3, 5, 7}, None} ]);


grid = Grid[{
    {Show[histPlot1
      ], Null},
    {Show[listPlot, ImageSize -> 250],
     Show[histPlot2, AspectRatio -> 3]}
    }, Spacings -> {-0.15, -1}];
Print[grid]

Which produces something like,

combined plot

Again, I want to have the top histogram's bottom axis sit on the top of the ListPlot[] Frame.

J. M.'s missing motivation
  • 124,525
  • 11
  • 401
  • 574
mikemtnbikes
  • 679
  • 3
  • 11

4 Answers4

6

If you don't mind having histograms on left and bottom frames you can use DensityHistogram with the Method suboption "DistributionAxes".

With this approach, in addition to histograms, you can have box-whisker chart, smooth histogram or data rug to represent the marginal distributions of input data:

SeedRandom[1]
data = RandomReal[BinormalDistribution[{0, 0}, {1, 1}, 0.5], 300];

DensityHistogram[data, {15, 12}, ImageSize -> Medium, ColorFunction -> (Blend[{LightRed, Red}, #] &), Method -> {"DistributionAxes" -> #}, PlotLabel -> Style[#, 16], ChartElementFunction -> ({ChartElementData["Rectangle"][##], Black, AbsolutePointSize @ 3, Point @ #2} &)] & /@ {"Histogram", "Lines", "BoxWhisker", "SmoothHistogram"}

Multicolumn[%, 2]

enter image description here

If you want to remove colors from 2D bins use `ColorFunction -> (White &) to get:

enter image description here

Note: I used a custom ChartElementFunction to add the data points above. Alternatively, you can replace the option ChartElementFunction -> ... with

Epilog -> {First[ListPlot[data, 
    PlotStyle -> Directive[Black, AbsolutePointSize @ 3]]]}

to get the same picture.

kglr
  • 394,356
  • 18
  • 477
  • 896
  • could the same be achieved using ListContourPlot ? The above answer looks really good. I am trying to explore whether I could adopt it when visualising my model :D – e.doroskevic Sep 11 '21 at 15:59
  • 1
    @e.doroskevic, ListContourPlot does not support the option DistributionAxes; but I think, with some combination of options and/or post-processing, the main plot can be replaced with a contour plot. Please consider posting this as a new question with a MWE/data. – kglr Sep 11 '21 at 19:56
5

I prefer to use Graphics and Inset make this kind display figure. It requires a bit more work, but provides great flexibility in the placement of the elements. To illustrate the approach, I present two versions of your figure, The 1st is an arrangement that I personally find pleasing; the 2nd is closer to what you show in your question.

Sample data

SeedRandom[1];
data = RandomReal[BinormalDistribution[{0, 0}, {1, 1}, 0.5], 50];
{histData1, histData2} = Transpose @ data;

dataPlot = Graphics[Point @ data, Frame -> True];

Framed with full axes data

histPlot1 = Histogram[histData1, 15, AspectRatio -> 1/5];
histPlot2 = Histogram[histData2, 12, AspectRatio -> 3, BarOrigin -> Left];
Framed[
  Graphics[
    {Text[Style["Plot Label", "SR", 16], Scaled @ {.5, .96}],
     Inset[dataPlot, Scaled @ {.05, .03}, Scaled @ {0, 0}, Scaled[.73]],
     Inset[histPlot1, Scaled @ {.05, .77}, Scaled @ {0, 0}, Scaled[.7]],
     Inset[histPlot2, Scaled @ {.77, .03}, Scaled @ {0, 0}, Scaled[.75]]},
    PlotRange -> MinMax /@ {histData1, histData2},
    PlotRangePadding -> {{.01, .33}, {.0, .33}} /. u_Real -> Scaled[u],
    ImageSize -> {500, 450}]]

fig_1

Unframed with histograms sitting on the scatter plot frame

histPlot3 = Histogram[histData1, 15, AspectRatio -> 1/5, Ticks -> {None, Automatic}];
histPlot4 = 
  Histogram[histData2, 12, 
    AspectRatio -> 3, BarOrigin -> Left, Ticks -> {Automatic, None}];
Graphics[
  {Text[Style["Plot Label", "SR", 16], Scaled @ {.40, .96}],
   Inset[dataPlot, Scaled @ {.05, .03}, Scaled @ {0, 0}, Scaled[.77]],
   Inset[histPlot3, Scaled @ {.05, .76}, Scaled @ {0, 0}, Scaled[.7]],
   Inset[histPlot4, Scaled @ {.7645, .03}, Scaled @ {0, 0}, Scaled[.75]]},
  PlotRange -> MinMax /@ {histData1, histData2},
  PlotRangePadding -> {{.01, .33}, {.0, .33}} /. u_Real -> Scaled[u],
  ImageSize -> {500, 450}]

fig_2

Even if neither of these figures is exactly what you are looking for, I think these examples show the versatility this approach. I hope you can adapt to your needs.

m_goldberg
  • 107,779
  • 16
  • 103
  • 257
4

Instead of manually messing with Inset as suggested by m_goldberg, the link supplied by abdullah to the plotGrid function written by Jens did 99% of what I wanted automatically. It only took an If to test if a list element is a Graphics or not to get it to where I wanted. I've also modified the options to allow for internal padding of the figures.
The modified code is below the figures.

e.g.,

plotGrid[{{histPlot1, None}, {listPlot, histPlot2}}, 500, 500, 
 sidePadding -> 40, internalSidePadding -> 0]

No internal padding

plotGrid[{{histPlot1, None}, {listPlot, histPlot2}}, 500, 500, 
 sidePadding -> 40, internalSidePadding -> 10]

with internal padding Clear[plotGrid]

 plotGrid::usage = "plotGrid[listOfPlots_, imageWidth_:720, \
imageHeight_:720, Options] creates a grid of plots from the list \
which allows the plots to the same axes with various padding options. \
 For an empty cell in the grid use None or Null. Additional options \
are: ImagePadding\[Rule]{{40, 40},{40, 40}}, InternalImagePadding\
\[Rule]{{0, 0},{0, 0}}.  ImagePadding can be given as an option for\ 
the figure as well \nCode modified from: \
https://mathematica.stackexchange.com/questions/6877/do-i-have-to-\
code-each-case-of-this-grid-full-of-plots-separately"

Options[plotGrid] = 
  Join[{sidePadding -> {{40, 40}, {40, 40}} , 
    internalSidePadding -> {{0, 0}, {0, 0}} } , Options[Graphics]];
plotGrid[l_List, w_: 720, h_: 720, opts : OptionsPattern[]] := 
 Module[{nx, ny, sidePadding = OptionValue[plotGrid, sidePadding], 
   internalSidePadding = OptionValue[plotGrid, internalSidePadding], 
   topPadding, widths, heights, dimensions, positions, singleGraphic, 
   frameOptions = 
    FilterRules[{opts}, 
     FilterRules[Options[Graphics], Except[{Frame, FrameTicks}]]]},

  (*expand [
  internal]SidePadding arguments to 4 in case given as single \
argument or in older form of 1 arguments *)

  Switch[Length[{sidePadding} // Flatten],
   2, sidePadding = {{sidePadding[[2]], 
      sidePadding[[2]]}, {sidePadding[[1]], sidePadding[[1]]}},
   4, sidePadding = sidePadding,
   _, sidePadding = {{sidePadding, sidePadding}, {sidePadding, 
      sidePadding}}
   ];
  Switch[Length[{internalSidePadding} // Flatten],
   2, internalSidePadding = {{internalSidePadding[[2]], 
      internalSidePadding[[2]]}, {internalSidePadding[[1]], 
      internalSidePadding[[1]]}},
   4, internalSidePadding = internalSidePadding,
   _, internalSidePadding = {{internalSidePadding, 
      internalSidePadding}, {internalSidePadding, internalSidePadding}}
   ];

  {ny, nx} = Dimensions[l];
  widths = (w - (Plus @@ sidePadding[[1]]))/nx Table[1, {nx}];
  widths[[1]] = widths[[1]] + sidePadding[[1, 1]];
  widths[[-1]] = widths[[-1]] + sidePadding[[1, 2]];
  heights = (h - (Plus @@ sidePadding[[2]]))/ny Table[1, {ny}];
  heights[[1]] = heights[[1]] + sidePadding[[2, 1]];
  heights[[-1]] = heights[[-1]] + sidePadding[[2, 2]];
  positions = 
   Transpose@
    Partition[
     Tuples[Prepend[Accumulate[Most[#]], 0] & /@ {widths, heights}], 
     ny];
  Graphics[Table[
    singleGraphic = l[[ny - j + 1, i]];

    If[Head[singleGraphic] === Graphics, 
     Inset[Show[singleGraphic, 
       ImagePadding -> ({{If[i == 1, sidePadding[[1, 1]], 0], 
            If[i == nx, sidePadding[[1, 2]], 0]}, {If[j == 1, 
             sidePadding[[2, 1]], 0], 
            If[j == ny, sidePadding[[2, 2]], 0]}} + 
          internalSidePadding), AspectRatio -> Full], 
      positions[[j, i]], {Left, Bottom}, {widths[[i]], heights[[j]]}]
     ], {i, 1, nx}, {j, 1, ny}], PlotRange -> {{0, w}, {0, h}}, 
   ImageSize -> {w, h}, Evaluate@Apply[Sequence, frameOptions]]]
mikemtnbikes
  • 679
  • 3
  • 11
3
SeedRandom[1];
data = RandomReal[BinormalDistribution[{0, 0}, {1, 1}, 0.5], 100];
{datax, datay} = Transpose @ data;

listplot = ListPlot[data, PlotStyle -> PointSize[Large], Frame -> True, 
   FrameLabel -> {"x", "y"}, Axes -> False];

histogramx = Histogram[datax, 15, 
   Frame -> {{True, False}, {False, False}}, FrameLabel -> {None, "Count"}];

histogramy = Histogram[datay, 12, BarOrigin -> Left, 
   Frame -> {{False, False}, {True, False}}, FrameLabel -> {"Count", None}];

You can also use Lukas Lang's ResourceFunction["PlotGrid"] to combine the three plots in a grid:

ResourceFunction["PlotGrid"][{{histogramx, None}, {listplot, histogramy}}, 
 Spacings -> 5, ItemSize -> {{200, 100}, {100, 200}}, AspectRatio -> 1]

enter image description here

kglr
  • 394,356
  • 18
  • 477
  • 896