Are these the values you find with Mathematica {{x -> 0.499956}, {x -> 0.499956}, {x -> 4.49762}, {x -> 1.00007}, {x -> 1.00007}}? Henrik's answer gives the reason for FindRoot's results. Here's a way to illustrate what's happening.
First, find the values FindRoot evaluates when the initial value is 0.7.
{res, {evx}} =
Reap[FindRoot[9 Exp[-x] Sin[2 Pi x] - 0.0015, {x, 0.7},
EvaluationMonitor :> Sow[x]]]
(*{{x -> 0.499956}, {{0.7, -0.260464, 0.587165, 0.479597, 0.499658,
0.499956, 0.499956, 0.499956}}}*)
Plot the values on the function.
Show[Plot[{9 Exp[-x] Sin[2 Pi x] - 0.0015}, {x, -.5, 5},
PlotRange -> All],
ListPlot[{Transpose[{evx, 9 Exp[-evx] Sin[2 Pi evx] - 0.0015}]},
PlotStyle -> Red]]

Do the same steps for initial value 0.75.
{res, {evx}} =
Reap[FindRoot[9 Exp[-x] Sin[2 Pi x] - 0.0015, {x, 0.75},
EvaluationMonitor :> Sow[x]]]
(*{{x -> 4.49762}, {{0.75, 1.75035, 2.73756, 4.71142, 2.87091, 4.52737,
4.49638, 4.49762, 4.49762, 4.49762}}}*)
Plot these values.
Show[Plot[{9 Exp[-x] Sin[2 Pi x] - 0.0015}, {x, -.5, 5},
PlotRange -> All],
ListPlot[{Transpose[{evx, 9 Exp[-evx] Sin[2 Pi evx] - 0.0015}]},
PlotStyle -> Red]]

Notice that starting at 0.7, the next approximation at -0.260464 brackets the root, and successive attempts converge to the root at 0.499956. However, starting at 0.75, the next approximation is more distant from the root, and successive approximations proceed along the function until 4.49762. For initial value 0.75, FindRoot's first approximation is a jump in the wrong direction.