If you make new variables and algebraic equations for the trigs then a solution can be obtained in reasonable time (this sort of thing has been done in a few prior MSE threads).
Clear[da, db, dc];
dvalRules = {da -> 1.12, db -> 1.23, dc -> 0.84};
trigRules = {Cos[a_] :> cs[a], Sin[a_] :> sn[a]};
eqns = {2 a b/(a + b) Sin[(aA + aB)/2] == dc,
2 b c/(b + c) Cos[aA/2] == da, 2 c a (c + a) Cos[aB/2] == db,
Sin[aA]/Sin[aA + aB] == da/dc, Sin[aB]/Sin[aA + aB] == db/dc};
polys0 = Numerator[
Together[
TrigExpand[
Apply[Subtract, eqns, {1}] /. {aA -> 2*aA, aB -> 2*aB}] /.
trigRules]];
trigIdens =
Map[#^2 + Apply[sn, #]^2 - 1 &, Cases[Variables[polys0], cs[_]]];
polys = Join[polys0, trigIdens] /. dvalRules;
vars = Variables[polys];
Now sole the system.
AbsoluteTiming[solns = NSolve[polys, vars];]
(* During evaluation of In[103]:= Solve::ratnz: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding exact system and numericizing the result.
Out[103]= {5.424746, Null} *)
Retain real-valued solutions.
realSolns = Select[solns, FreeQ[#, Complex] &];
{a, b, c} /. realSolns
(* Out[113]= {{-1.11217844394,
1.11217844394, -0.372460206543}, {1.40256957119, -1.40256957119, \
-0.932194784531}, {-1.25024995131,
0.314387064726, -0.314387064726}, {1.35457077085,
0.608749750689, -0.608749750689}, {-0.608749750689, -1.35457077085,
1.35457077085}, {-0.314387064726,
1.25024995131, -1.25024995131}, {-0.932194784531, 0.932194784531,
1.40256957119}, {-0.372460206543,
0.372460206543, -1.11217844394}, {-2.0632420756, -4.09496314451,
20.3694113194}, {-0.23991946789,
0.20831767403, -10.688097699}, {-2.82296467293, -0.534229776885,
2.91787741243}, {-0.563848363706, -2.20962845015, -0.928872449049}, \
{-0.785573051303, 2.74272228649,
12.2621124292}, {0.252745851079, -1.09244424909, -10.863435061}, \
{-0.314348110282, 1.04701586538, 1.74202830166}, {-0.230753295866,
0.474486543322, -1.72889992565}, {-0.252745851079, 1.09244424909,
10.863435061}, {0.785573051303, -2.74272228649, -12.2621124292}, \
{0.230753295866, -0.474486543322,
1.72889992565}, {0.314348110282, -1.04701586538, -1.74202830166}, \
{0.23991946789, -0.20831767403, 10.688097699}, {2.0632420756,
4.09496314451, -20.3694113194}, {0.563848363706, 2.20962845015,
0.928872449049}, {2.82296467293,
0.534229776885, -2.91787741243}, {0.372460206543, -0.372460206543,
1.11217844394}, {0.932194784531, -0.932194784531, -1.40256957119}, \
{-1.35457077085, -0.608749750689,
0.608749750689}, {1.25024995131, -0.314387064726,
0.314387064726}, {0.314387064726, -1.25024995131,
1.25024995131}, {0.608749750689,
1.35457077085, -1.35457077085}, {-1.40256957119, 1.40256957119,
0.932194784531}, {1.11217844394, -1.11217844394, 0.372460206543}} *)
Reduceto see where it goes... – José Antonio Díaz Navas Nov 07 '17 at 10:01/in the code.2 c a (c + a)should be2 c a/(c + a). – Somos Aug 11 '21 at 02:36