0

No answer is given and no error message as well for this expression.

DSolve[X*Y''[X] + (3*X^3 - 1) Y'[X] == C, Y[X], X]

Hope someone can help me. I really appreciate that.

Tommy
  • 3
  • 1

3 Answers3

1

Try:

sol = First@Block[{Integrate}, DSolve[X*Y''[X] + (3*X^3 - 1) Y'[X] == C, 
Y[X], X] /. {Integrate -> Inactive[Integrate]}] // Simplify

$\left\{Y(X)\to \int _1^X\exp \left(\int _1^{K[3]}\left(\frac{1}{K[1]}-3 K[1]^2\right)dK[1]\right) \left(c_1+\int _1^{K[3]}\frac{C \exp \left(-\int _1^{K[2]}\left(\frac{1}{K[1]}-3 K[1]^2\right)dK[1]\right)}{K[2]}dK[2]\right)dK[3]+c_2\right\}$

Activate[sol] (* Integrate can't find closed solution *)

Solution by Maple 2017.3: enter image description here

Mariusz Iwaniuk
  • 13,841
  • 1
  • 25
  • 41
0

Result in V12 (tested in V12.2):

DSolve[X*Y''[X] + (3*X^3 - 1) Y'[X] == C, Y[X], X]

(* {{Y[X] -> C[2] + Inactive[Integrate][(E^-K[1]^3 C[1] K[1] - 1/3 C E^-K[1]^3 Gamma[-(1/3), -K[1]^3] (-K[1]^3)^(1/3)), {K[1], 1, X}]}} *)


Original answer

From Why Can't `DSolve` Find a Solution for this ODE?, which might be considered a duplicate:

ClearAll[withTimedIntegrate];
SetAttributes[withTimedIntegrate, HoldFirst];
withTimedIntegrate[code_, tc_] := 
  Module[{$in}, Internal`InheritedBlock[{Integrate}, Unprotect[Integrate];
    i : Integrate[___] /; ! TrueQ[$in] := 
     Block[{$in = True}, TimeConstrained[i, tc, Inactivate[i, Integrate]]];
    Protect[Integrate];
    code]];

withTimedIntegrate[{dsol} = DSolve[XY''[X] + (3X^3 - 1) Y'[X] == CC, Y[X], X], 1] ({{Y[X] -> C[2] + Inactive[Integrate][(E^-K[1]^3 C[1] K[1] + CC E^-K[1]^3 (-E^K[1]^3 + Gamma[2/3, -K[1]^3] (-K[1]^3)^(1/3))), {K[1], 1, X}]}} )

(Replaced the protect system symbol C by CC.)

Update: Michael Seifert's answer can be obtained from the above using FullSimplify:

FullSimplify[%]
(*
  {{Y[X] -> C[2] + 
       Inactive[Integrate][(-CC + 
         E^-K[1]^3 K[1] (C[1] - CC ExpIntegralE[1/3, -K[1]^3] K[1]^2)), {K[1], 1, X}]}}
*)
Michael E2
  • 235,386
  • 17
  • 334
  • 747
0

Mathematica can solve the ODE partway, but the answer isn't all that nice. Under the substitution $w(x) = y'(x)$, we have $x w' + (3 x^3 - 1) w = C$, which Mathematica can solve:

DSolve[x w'[x] + (3 x^3 - 1) w[x] == c, w[x], x]

(* {{w[x] -> E^-x^3 x C[1] + c E^-x^3 (-E^x^3 + (-x^3)^(1/3) Gamma[2/3, -x^3])}} *)

soln = FullSimplify[%]

(* {{w[x] -> -c + E^-x^3 (x C[1] - c x^3 ExpIntegralE[1/3, -x^3])}} *)

However, to get a full solution for $y(x)$ out of this, MM would have to integrate this function, which it (understandably) can't do:

Integrate[w[x] /. First[soln], x]

(* [Integral](-c + E^-x^3 (x C[1] - c x^3 ExpIntegralE[1/3, -x^3])) [DifferentialD]x *)

Michael E2
  • 235,386
  • 17
  • 334
  • 747
Michael Seifert
  • 15,208
  • 31
  • 68