I need to create a function that returns all possible trebles of integers that sum up to a given number. For example, is n=2 then I need something like this:
f[12,-5,5] or f[7,-4,-1] etc
For that reason I have written the following:
n = 2;
Sum[f[n - i - j, i, j], {i, -5, n}, {j, -5, n - i}]
which outputs:
f[0, -5, 7] + f[0, -4, 6] + f[0, -3, 5] + f[0, -2, 4] + f[0, -1, 3] +
f[0, 0, 2] + f[0, 1, 1] + f[0, 2, 0] + f[1, -5, 6] + f[1, -4, 5] +
f[1, -3, 4] + f[1, -2, 3] + f[1, -1, 2] + f[1, 0, 1] + f[1, 1, 0] +
f[1, 2, -1] + f[2, -5, 5] + f[2, -4, 4] + f[2, -3, 3] + f[2, -2, 2] +
f[2, -1, 1] + f[2, 0, 0] + f[2, 1, -1] + f[2, 2, -2] + f[3, -5, 4] +
f[3, -4, 3] + f[3, -3, 2] + f[3, -2, 1] + f[3, -1, 0] +
f[3, 0, -1] + f[3, 1, -2] + f[3, 2, -3] + f[4, -5, 3]
My problem is that for each part of this summation I also need the permutations
for example for f[0,-5,7] I need these:
f[0, -5, 7], f[0, 7, -5], f[-5, 0, 7], f[-5, 7, 0], f[7, 0, -5], f[7, -5,
0]
My problem is that I don't know how to map it:
Using
f /@ Permutations[{0, -5, 7}]
returns a form that I cannot use
{f[{0, -5, 7}], f[{0, 7, -5}], f[{-5, 0, 7}], f[{-5, 7, 0}],
f[{7, 0, -5}], f[{7, -5, 0}]}
f is a probability density function, and I need to sum the probabilities for given numbers, hence I need to be able to evaluate f.
f @@@ Permutations[{0, -5, 7}]– kglr Dec 28 '17 at 10:17