I have the following inequality
$F(\theta)=2e^{-\theta}[\cos\theta + \phi\sin\theta] - e^{-2\theta}[\cos2\theta + \phi \sin2\theta]>1 $.
Herre $\theta\ge0$ is real variable and $\phi$ is a real constant, say 100. How should I proceed to find all the points such that $F(\theta)$ is greater than 1? How to find the maximum values of $F(\theta)$ as a function of $\theta$?
F[x_]=2Exp[-x](Cos[100*x] + Sin[100*x]/100) - Exp[-2x](Cos[2*100*x] + Sin[2*100*x]/100)


Reduce[F[x] > 1, x]? OrReduce[F[x] > 1, x, Reals]? – Michael E2 Jan 10 '18 at 05:10xapproaches-Infinity. – bbgodfrey Jan 10 '18 at 05:20