Can anyone tell me why this method (Symbolic Constrained Optimization) works but not the following for obtaining symbolic solutions of a constrained optimization problem:
MaxValue[{a^(1/2)*(y - p*q)^(1/2) + d*(1/2)*(Q + q - a),
a <= Q + q && q <= y/p && q >= 0 && a >= 0}, {a, q}]
But it freezes, so I assign some values to the parameters:
y = 50
p = 2
d = 0.95
MaxValue[{a^(1/2)*(y - p*q)^(1/2) + d*(1/2)*(Q + q - a),
a <= Q + q && q <= y/p && q >= 0 && a >= 0}, {a, q}]
Out = MaxValue[{Sqrt[a] Sqrt[50 - 2 q] + 0.475 (-a + q + Q),
a <= q + Q && q <= 25 && q >= 0 && a >= 0}, {a, q}]


Qstill has no numerical value assigned. – Henrik Schumacher Mar 25 '18 at 18:55