I have three points in a 3D space
A(xa,ya,za)
B(xb,yb,zb)
C(xc,yc,zc)
I would like to find the smallest sphere which pass A,B, and C.
(x-xo)^2+(y-yo)^2+(z-zo)^2=R^2
I need to obtain
(xo,yo,zo, R)
First, I consider solving the equal distance.
Solve[{(x - xa)^2 + (y - ya)^2 + (z - za)^2 ==
R, (x - xb)^2 + (y - yb)^2 + (z - zb)^2 ==
R, (x - xc)^2 + (y - yc)^2 + (z - zc)^2 == R}, {x, y, z}]
But I do not now how to add it as a condition of a minimization
Minimize[R, ?????]
Update I just add the point that mathematica stucks on direct geometric solution
Solve[{(x - xa)^2 + (y - ya)^2 + (z - za)^2 == R^2,
(x - xb)^2 + (y - yb)^2 + (z - zb)^2 == R^2,
(x - xc)^2 + (y - yc)^2 + (z - zc)^2 == R^2,
Det[{{z - xa, y - ya, z - za}, {xb - xa, yb - ya,
zb - za}, {xc - xa, yc - ya, zc - za}}] == 0},
{x, y, z, R}]

SolveandMinimize. But other ideas are welcome. However, I do not think mathematica can do calculate analytical circumcircle. – ar2015 Apr 10 '18 at 05:20