I have a very simple question.
If I have a polynomial in x say, $f(x)$, how to construct the differential operator $f(\frac{d}{dx})$?
Failed Attempt:
In[739]:= f[x] = a0 + a1*x + a2*x^2 + a3*x^3;
f[x] /. {x -> Function@D[#, x], x^n_ -> Function@D[#, {x, n}]}
Out[740]= a0 + a1 (\!\(
\*SubscriptBox[\(\[PartialD]\), \(x\)]#1\) &) + a2 (\!\(
\*SubscriptBox[\(\[PartialD]\), \({x, 2}\)]#1\) &) + a3 (\!\(
\*SubscriptBox[\(\[PartialD]\), \({x, 3}\)]#1\) &)