I want to solve the nonlinear PDE for the anisotropic fluid flow:
$(C_{ijkl}v_{k,l})_{,j}-p_{,i}-v_jv_{i,j}=0$
Mathematica can solve it without last nonlinear term with the following code (using Finite Element Method):
Ui[x, y, z] := {u[x, y, z], v[x, y, z], w[x, y, z]};
coord := {x, y, z};
op = {
Sum[D[Sum[Sum[Cijkl[[1, j, k, l]]*D[Ui[x, y, z][[k]], coord[[l]]], {l,3}], {k, 3}], coord[[j]]], {j, 3}] - D[p[x, y, z], x],
Sum[D[Sum[Sum[Cijkl[[2, j, k, l]]*D[Ui[x, y, z][[k]], coord[[l]]], {l,3}], {k, 3}], coord[[j]]], {j, 3}] - D[p[x, y, z], y],
Sum[D[Sum[Sum[Cijkl[[3, j, k, l]]*D[Ui[x, y, z][[k]], coord[[l]]], {l,3}], {k, 3}], coord[[j]]], {j, 3}] - D[p[x, y, z], z],
Sum[D[Ui[x, y, z][[k]], coord[[k]]], {k, 3}]
};
bcs = {
DirichletCondition[u[x, y, z] == 4 - y^2 - z^2, x == 0],
DirichletCondition[{u[x, y, z] == 0, v[x, y, z] == 0, w[x, y, z] == 0}, 0 < x < 8],
DirichletCondition[p[x, y, z] == 0, x == 8]
};
{xVel, yVel, zVel, pressure} = NDSolveValue[{op == {0, 0, 0, 0}, bcs}, {u, v, w, p}, {x, y, z} \[Element] mesh, Method -> {"FiniteElement", "InterpolationOrder" -> {u->2, v->2, w->2, p->1}}
(The mesh has been generated previously.)
But when I'm trying to add a nonlinear term in the 'op' as follow:
-Sum[Ui[x, y, z][[j]]*D[Ui[x, y, z][[1]], coord[[j]]], {j, 3}]
I get the error message:
Nonlinear coefficients are not supported in this version of NDSolve.
Are there in Mathematica any solvers or other methods for 'NDSolveValue' to solve nonlinear PDEs?