Let's define,
$k(e)=\sqrt{e}$, $\gamma_1(e,v_1,v_2)=(v_1+iv_2)/(i*k(e))$ , $\gamma_2(e,v_1,v_2)=(v_1-iv_2)/(i*k(e))$, $$\\$$ Now the function gets defined as, $f(e,v_1,v_2)=(2-\gamma_1(e,v_1,v_2)) (2-\gamma_2(e,v_1,v_2))-\gamma_1(e,v_1,v_2) \gamma_2(e,v_1,v_2)* e^{4 ik(e)}$
If I take, $v_1=1.4$, $v_2=2.2$, Then function $|f(e,v_1,v_2)|$ has a real root around 1.5, and I want know about its complex roots by any means.
Could you please help me ??
Here again rewrite above expressions,
k[e_]:=Sqrt[e];
gamma1[e_,v1_,v2_]:=(v1+I*v2)/(I*k[e]);
gamma2[e_,v1_,v2_]:=(v1-I*v2)/(I*k[e]);
f[e_,v1_,v2_]:=(2-gamma1[e,v1,v2])*(2-gamma2[e,v1,v2])-gamma1[e,v1,v2] *gamma2[e,v1,v2]* Exp[4*I*k[e]]
