eq = y x + Sqrt[x^2 + 4 y] == 2
Calculate: $dy/dx$
funcX = Dt[eq, x]
(* y + x Dt[y, x] + (2 x + 4 Dt[y, x])/(2 Sqrt[x^2 + 4 y]) == 0 *)
solX = Solve[funcX, Dt[y, x]]
(* {{Dt[y, x] -> (-x - y Sqrt[x^2 + 4 y])/(2 + x Sqrt[x^2 + 4 y])}} *)
Calculate: $dx/dy$
funcY = Dt[eq, y]
(* x + y Dt[x, y] + (4 + 2 x Dt[x, y])/(2 Sqrt[x^2 + 4 y]) == 0 *)
solY = Solve[funcY, Dt[x, y]]
(* {{Dt[x, y] -> (-2 - x Sqrt[x^2 + 4 y])/(x + y Sqrt[x^2 + 4 y])}} *)
The equation of the tangent line at a regular point.
tangentcurve = (Dt[y, x] /. solX[[1]] /. x -> 0 /. y -> 1) (x -
0) + (Dt[x, y] /. solY[[1]] /. x -> 0 /. y -> 1) (y - 1) == 0
(* 1 - x - y == 0 *)
ContourPlot[Evaluate[{tangentcurve, eq}], {x, -1, 1}, {y, 0, 2},
Epilog -> {Red, PointSize[Medium], Point[{0, 1}]}, Axes -> True,
Frame -> False]

Solve by normal differentiation:
EQx = y[x]*x + Sqrt[x^2 + 4 y[x]] == 2;
EQy = y*x[y] + Sqrt[x[y]^2 + 4 y] == 2;
SolX = Solve[D[EQx, x], y'[x]]
SolY = Solve[D[EQy, y], x'[y]]
TangentCurve = (y'[x] /. SolX[[1]] /. y[x] -> y /. x -> 0 /.
y -> 1) (x - 0) + (x'[y] /. SolY[[1]] /. x[y] -> x /. x -> 0 /.
y -> 1) (y - 1) == 0
ContourPlot[Evaluate[{TangentCurve, (EQx /. y[x] -> y)}], {x, -1, 1}, {y, 0, 2},
Epilog -> {Red, PointSize[Medium], Point[{0, 1}]}, Axes -> True,
Frame -> False]