0

I tried to find the slope for the line I got from contour plot for a function(f) in two variables(z,x) using "Get Coordinate" and the slope =12 which is correct, Is there any way to use specific command to get the slope rather than "Get Coordinate"?

the first variable is z and its values are below:

    z = {0.025`, 0.025500000000000002`, 0.026000000000000002`, 
     0.026500000000000003`, 0.027000000000000003`, 0.0275`, 
      0.028000000000000004`, 0.0285`, 0.028999999999999998`, 
     0.029500000000000002`, 0.03`, 0.025`, 0.025500000000000002`, 
     0.026000000000000002`, 0.026500000000000003`, 
     0.027000000000000003`, 0.0275`, 0.028000000000000004`, 0.0285`, 
     0.028999999999999998`, 0.029500000000000002`, 0.03`, 0.025`, 
     0.025500000000000002`, 0.026000000000000002`, 
     0.026500000000000003`, 0.027000000000000003`, 0.0275`, 
     0.028000000000000004`, 0.0285`, 0.028999999999999998`, 
      0.029500000000000002`, 0.03`, 0.025`, 0.025500000000000002`, 
     0.026000000000000002`, 0.026500000000000003`, 
     0.027000000000000003`, 0.0275`, 0.028000000000000004`, 0.0285`, 
     0.028999999999999998`, 0.029500000000000002`, 0.03`, 0.025`, 
     0.025500000000000002`, 0.026000000000000002`, 
     0.026500000000000003`, 0.027000000000000003`, 0.0275`, 
     0.028000000000000004`, 0.0285`, 0.028999999999999998`, 
     0.029500000000000002`, 0.03`, 0.025`, 0.025500000000000002`, 
     0.026000000000000002`, 0.026500000000000003`, 
     0.027000000000000003`, 0.0275`, 0.028000000000000004`, 0.0285`, 
     0.028999999999999998`, 0.029500000000000002`, 0.03`, 0.025`, 
     0.025500000000000002`, 0.026000000000000002`, 
     0.026500000000000003`, 0.027000000000000003`, 0.0275`, 
     0.028000000000000004`, 0.0285`, 0.028999999999999998`, 
      0.029500000000000002`, 0.03`, 0.025`, 0.025500000000000002`, 
     0.026000000000000002`, 0.026500000000000003`, 
    0.027000000000000003`, 0.0275`, 0.028000000000000004`, 0.0285`, 
    0.028999999999999998`, 0.029500000000000002`, 0.03`, 0.025`, 
    0.025500000000000002`, 0.026000000000000002`, 
    0.026500000000000003`, 0.027000000000000003`, 0.0275`, 
    0.028000000000000004`, 0.0285`, 0.028999999999999998`, 
    0.029500000000000002`, 0.03`, 0.025`, 0.025500000000000002`, 
    0.026000000000000002`, 0.026500000000000003`, 
    0.027000000000000003`, 0.0275`, 0.028000000000000004`, 0.0285`, 
    0.028999999999999998`, 0.029500000000000002`, 0.03`, 0.025`, 
    0.025500000000000002`, 0.026000000000000002`, 
    0.026500000000000003`, 0.027000000000000003`, 0.0275`, 
    0.028000000000000004`, 0.0285`, 0.028999999999999998`, 
     0.029500000000000002`, 0.03`};

the second variable is x and its values are below:

    x = {0.075`, 0.075`, 0.075`, 0.075`, 0.075`, 0.075`, 0.075`, 0.075`, 
    0.075`, 0.075`, 0.075`, 0.0755`, 0.0755`, 0.0755`, 0.0755`, 
    0.0755`, 0.0755`, 0.0755`, 0.0755`, 0.0755`, 0.0755`, 0.0755`, 
    0.076`, 0.076`, 0.076`, 0.076`, 0.076`, 0.076`, 0.076`, 0.076`, 
    0.076`, 0.076`, 0.076`, 0.0765`, 0.0765`, 0.0765`, 0.0765`, 
    0.0765`, 0.0765`, 0.0765`, 0.0765`, 0.0765`, 0.0765`, 0.0765`, 
    0.077`, 0.077`, 0.077`, 0.077`, 0.077`, 0.077`, 0.077`, 0.077`, 
    0.077`, 0.077`, 0.077`, 0.0775`, 0.0775`, 0.0775`, 0.0775`, 
    0.0775`, 0.0775`, 0.0775`, 0.0775`, 0.0775`, 0.0775`, 0.0775`, 
    0.078`, 0.078`, 0.078`, 0.078`, 0.078`, 0.078`, 0.078`, 0.078`, 
   0.078`, 0.078`, 0.078`, 0.0785`, 0.0785`, 0.0785`, 0.0785`, 
   0.0785`, 0.0785`, 0.0785`, 0.0785`, 0.0785`, 0.0785`, 0.0785`, 
    0.079`, 0.079`, 0.079`, 0.079`, 0.079`, 0.079`, 0.079`, 0.079`, 
    0.079`, 0.079`, 0.079`, 0.0795`, 0.0795`, 0.0795`, 0.0795`, 
   0.0795`, 0.0795`, 0.0795`, 0.0795`, 0.0795`, 0.0795`, 0.0795`, 
   0.08`, 0.08`, 0.08`, 0.08`, 0.08`, 0.08`, 0.08`, 0.08`, 0.08`, 
   0.08`, 0.08`};

below is the equation for the function that is in two variables z and x

     f[z_, x_] := -0.6377467633028947` (-0.07784` + x) - 
      27.72993372621121` (-0.07784` + x)^2 - 
      3064.951953004679` (-0.07784` + x)^3 + 
       6.833112300306057` (-0.02712` + z) + 
      2.5082936542029852` (-0.02712` + z)^2 + 
      3429.913872901706` (-0.02712` + z)^3





     r = ContourPlot[f[z, x] == 0, {z, 0.025, 0.03}, {x, 0.075, 0.08}]


      y2 = 0.07806; y1 = 0.07734; x2 = 0.02713; x1 = 0.02707;

      mm = (y2 - y1)/(x2 - x1)

       12.

     m[x1_, x2_, y1_, y2_] := (y2 - y1)/(x2 - x1)

      m[0.025, 0.03, 0.075`, 0.08`]
        1.
Ghady
  • 305
  • 1
  • 10

0 Answers0