Namely,
$$\left\{\left(\tan ^2\left(x-\frac{\pi }{3}\right)+\tan ^2\left(y+\frac{\pi }{6}\right)\right) (\sin (x)+\cos (y)-1)=0,\\ (\sin (y)-\sin (2 y)+2) (\sin (x)-\cos (y))=0,\\x\geq 0,x<2 \pi ,y\geq 0,y<2 \pi \right\}. $$
The plot
ContourPlot[{(Cos[y] + Sin[x] - 1)*(Tan[x - Pi/3]^2 + Tan[y + Pi/6]^2) ==0,
(Sin[x] - Cos[y])*(2 - Sin[2 y] + Sin[y]) == 0}, {x,0,2*Pi}, {y, 0,2*Pi}]
shows four real solutions. However,
Reduce[{(Cos[y] + Sin[x] - 1)*(Tan[x - Pi/3]^2 + Tan[y + Pi/6]^2) == 0,
(Sin[x] -Cos[y])*(2 - Sin[2 y] + Sin[y])==0,x >= 0, x<2*Pi, y >= 0, y < 2*Pi},{x,y}, Reals]
performs
(x == [Pi]/6 && y == (5 [Pi])/3) || (x == 2 ([Pi] + ArcTan[Root[{-3 + #1^2 &, 9 + 24 #1 #2 + 168 #2^2 + 440 #1 #2^3 - 1604 #2^4 - 4968 #1 #2^5 + 8600 #2^6 + 11000 #1 #2^7 - 12042 #2^8 - 11000 #1 #2^9 + 8600 #2^10 + 4968 #1 #2^11 - 1604 #2^12 - 440 #1 #2^13 + 168 #2^14 - 24 #1 #2^15 + 9 #2^16 &}, {2, 2}]]) && y == 2 ArcTan[ Root[{-3 + #1^2 &, 9 + 24 #1 #2 + 168 #2^2 + 440 #1 #2^3 - 1604 #2^4 - 4968 #1 #2^5 + 8600 #2^6 + 11000 #1 #2^7 - 12042 #2^8 - 11000 #1 #2^9 + 8600 #2^10 + 4968 #1 #2^11 - 1604 #2^12 - 440 #1 #2^13 + 168 #2^14 - 24 #1 #2^15 + 9 #2^16 &, 31716 + 23256 #1 + 129132 #2 - 9873 #1 #2 + 3554904 #2^2 + 447978 #1 #2^2 - 3706428 #2^3 + 15729 #1 #2^3 - 23650076 #2^4 - 4305612 #1 #2^4 + 11333348 #2^5 + 7026787 #1 #2^5 + 46524792 #2^6 + 8877606 #1 #2^6 - 12884532 #2^7 - 11758723 #1 #2^7 - 44195412 #2^8 - 8512688 #1 #2^8 + 7284948 #2^9 + 9579965 #1 #2^9 + 19350440 #2^10 + 3611158 #1 #2^10 - 1247492 #2^11 - 1925981 #1 #2^11 - 1720692 #2^12 - 307100 #1 #2^12 + 116700 #2^13 + 219825 #1 #2^13 - 93816 #2^14 - 16998 #1 #2^14 + 6516 #2^15 + 11439 #1 #2^15 + 147456 #3 &}, {2, 2, 1}]]) || (x == 2 ArcTan[ Root[{-3 + #1^2 &, 9 + 24 #1 #2 + 168 #2^2 + 440 #1 #2^3 - 1604 #2^4 - 4968 #1 #2^5 + 8600 #2^6 + 11000 #1 #2^7 - 12042 #2^8 - 11000 #1 #2^9 + 8600 #2^10 + 4968 #1 #2^11 - 1604 #2^12 - 440 #1 #2^13 + 168 #2^14 - 24 #1 #2^15 + 9 #2^16 &}, {2, 6}]] && y == 2 [Pi] + 2 ArcTan[ Root[{-3 + #1^2 &, 9 + 24 #1 #2 + 168 #2^2 + 440 #1 #2^3 - 1604 #2^4 - 4968 #1 #2^5 + 8600 #2^6 + 11000 #1 #2^7 - 12042 #2^8 - 11000 #1 #2^9 + 8600 #2^10 + 4968 #1 #2^11 - 1604 #2^12 - 440 #1 #2^13 + 168 #2^14 - 24 #1 #2^15 + 9 #2^16 &, 31716 + 23256 #1 + 129132 #2 - 9873 #1 #2 + 3554904 #2^2 + 447978 #1 #2^2 - 3706428 #2^3 + 15729 #1 #2^3 - 23650076 #2^4 - 4305612 #1 #2^4 + 11333348 #2^5 + 7026787 #1 #2^5 + 46524792 #2^6 + 8877606 #1 #2^6 - 12884532 #2^7 - 11758723 #1 #2^7 - 44195412 #2^8 - 8512688 #1 #2^8 + 7284948 #2^9 + 9579965 #1 #2^9 + 19350440 #2^10 + 3611158 #1 #2^10 - 1247492 #2^11 - 1925981 #1 #2^11 - 1720692 #2^12 - 307100 #1 #2^12 + 116700 #2^13 + 219825 #1 #2^13 - 93816 #2^14 - 16998 #1 #2^14 + 6516 #2^15 + 11439 #1 #2^15 + 147456 #3 &}, {2, 6, 1}]])
which is not correct in view of
N[%]
(x==0.523599&&y==5.23599)||(x==4.18879&&y==2.61799)||(x==1.0472&&y==5.75959)
and
{(Cos[y] + Sin[x] - 1)*(Tan[x - Pi/3]^2 + Tan[y + Pi/6]^2) == 0,
(Sin[x] - Cos[y])*(2 - Sin[2 y] + Sin[y]) == 0} /.
{x -> 4.188790204786391, y -> 2.6179938779914944}
{False,False}
Addition. Up to the suggestion of Michael E2, the command
Reduce[{(Cos[y] + Sin[x] - 1)*(Tan[x - Pi/3]^2 + Tan[y + Pi/6]^2) ==
0, (Sin[x] - Cos[y])*(2 - Sin[2 y] + Sin[y]) == 0, x>= 0, x < 2*Pi, y>= 0, y < 2*Pi}, {x, y}, Reals]//FullSimplify
does the job, outputting
6 x == [Pi] && 3 y == 5 [Pi]) || (3 x == 4 [Pi] && 6 y == 5 [Pi]) || (3 x == [Pi] && 6 y == 11 [Pi])
Micael E2 also explains the result of ContourPlot in his comments.
The happy end.




