As @t-smart seems to suspect, the change in V11.3 to let machine underflows to underflow to 0. is at the root of this bug. In the OP's problem, Mathematica isolates the roots with rational numbers to the desired precision. It then uses the interval length to determine the precision argument to N to get the final result. Unfortunately it uses machine precision to approximate the interval length, which underflows to 0.. The resulting precision, based on Log[0.] is Indeterminate, which is an invalid precision argument for N. This failure results in N returning unevaluated.
FWIW, a fix is to redefine N via the Villegas-Gayley trick:
Internal`InheritedBlock[{N},
Unprotect[N];
N[e_] /; ! TrueQ[$in] := Block[{$in = True},
With[{ne = N[e]},
If[e != 0 && ne == 0.,
N[e, $MachinePrecision],
ne
]
]];
Protect[N];
N[Root[{750 + 5*E^((Log[3] - Log[5] + Log[13])*#1) - 300*#1 -
2*E^((Log[3] - Log[5] + Log[13])*#1)*#1 -
5*E^((Log[3] - Log[5] + Log[13])*#1)*(Log[3] - Log[5] +
Log[13])*#1 +
E^((Log[3] - Log[5] + Log[13])*#1)*(Log[3] - Log[5] +
Log[13])*#1^2 &,
1.61954714423535277337584345129603991681`20.521825446421918}],
2010]
]
(*
1.61954714423535277337906541500279581776848110660831546798133301726783\
...\
317430074329935276876493295501167507324563338238323
*)
I cannot explain the threshold precision (which seems to be Log10[2*^2003]) for the bug.
1.6195471442353...when I ran that code. – Daniel Lichtblau Jun 04 '18 at 14:22prec >= 2004(version 11.3, macOS). – Henrik Schumacher Jun 04 '18 at 14:29100000, and it works just fine for me (10.4.1 for Microsoft Windows (64-bit)). – AccidentalFourierTransform Jun 04 '18 at 15:14N[...., 100000]works fine on10.4.1 for Linux x86 (64-bit), but fails for $\geq$2003on11.3.0 for Linux x86 (64-bit). – corey979 Jun 04 '18 at 15:36